精英家教网 > 高中数学 > 题目详情
17.一个大风车的半径为8米,按逆时针方向12分钟旋转一周,它的最低点离地面高2米,如图所示,设风车翼片的一个端点P离地面的距离为h(m),P的初始位置在最低点.风车转动的时间为t(min),当t=8(min)时,h=14(m); h与t的函数关系为$h(t)=-8cos\frac{π}{6}t+10$.

分析 由实际问题设出P与地面高度与时间t的关系,f(t)=Acos(ωt+φ)+B(A>0,ω>0,φ∈[0,2π)),由题意求出三角函数中的参数A,B,及周期T,利用三角函数的周期公式求出ω,通过初始位置求出φ,从而得解.

解答 解:由题意,T=12,∴ω=$\frac{π}{6}$,
设h(t)=Acos(ωt+φ)+B,(A>0,ω>0,φ∈[0,2π)),则 $\left\{\begin{array}{l}{A+B=18}\\{-A+B=2}\end{array}\right.$,
∴A=8,B=10,可得:h(t)=8cos($\frac{π}{6}$t+φ)+10,
∵P的初始位置在最低点,t=0时,有:h(t)=2,即:8cosφ+10=2,解得:φ=2kπ+π,k∈Z,
∴φ=π,
∴h与t的函数关系为:h(t)=8cos($\frac{π}{6}$t+π)+10=10-8cos$\frac{π}{6}$t,(t≥0),当t=8时,h(8)=10-8cos($\frac{π}{6}$×8)=14,
故答案为:14,$h(t)=-8cos\frac{π}{6}t+10$(t≥0).

点评 本题考查通过实际问题得到三角函数的性质,由性质求三角函数的解析式;考查y=Asin(ωx+φ)中参数的物理意义,注意三角函数的模型的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若圆x2+y2=R2(R>0)与曲线||x|-|y||=1的全体公共点恰好是一个正多边形的顶点,则R=$\sqrt{2+\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某品牌洗衣机专卖店在国庆期间举行了八天的促销活动,每天的销量(单位:台)如茎叶图所示,则销售量的中位数是15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若$\frac{π}{4}$<α≤β≤$\frac{π}{3}$,则2α-β的取值范围是($\frac{π}{6}$,$\frac{5π}{12}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$=(-3,4),向量$\overrightarrow{b}$与$\overrightarrow{a}$方向相反,且$\overrightarrow{b}$=λ$\overrightarrow{a}$,|$\overrightarrow{b}$|=1,则实数λ的值为(  )
A.-$\frac{3}{4}$B.-$\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从0,1,2,3,5,7这六个数字中,任取出两个不同的数字作为直线Ax+By=0的系数A,B,则可以得到不同的直线条数为(  )
A.22条B.30条C.12条D.20条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\left\{\begin{array}{l}{5,(0≤x≤1)}\\{f(x-1)+3,(x>1)}\end{array}\right.$.
(1)求f(2),f(5)的值;
(2)当x∈N*时,f(1),f(2),f(3),f(4),…构成一数列,求其通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在直角坐标系中,如果不同两点A(a,b),B(-a,-b)都在函数y=H(x)的图象上,则称点对[A,B]为函数H(x)的一组“文雅点”([A,B]与[B,A]看作一组),已知定义在[0,+∞)上的函数f(x)满足f(x+2)=$\sqrt{2}$•f(x),且当x∈[0,2]时,f(x)=sin$\frac{π}{2}$x,且函数H(x)=$\left\{\begin{array}{l}{f(x),0<x≤8}\\{g(x),-8≤x<0}\end{array}\right.$ 的“文雅点”有4组,则g(x)的表达式可以为(
A.g(x)=m,其中m为常数,且m∈(-2$\sqrt{2}$,-$\sqrt{2}$)B.g(x)=-($\frac{1}{2}$)x
C.g(x)=m,其中m为常数,且m∈(-2,-$\sqrt{2}$)D.g(x)=-ln(-x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.我校举行环保知识大奖赛,比赛分初赛和决赛两部分,初赛采用选一题答一题的方式进行.每位选手最多有5次答题机会.选手累计答对3题或答错三题终止初赛的比赛.答对三题直接进入决赛,答错3题则被淘汰.已知选手甲连续两次答错的概率为$\frac{1}{9}$(已知甲回答每个问题的正确率相同,并且相互之间没有影响)
(1)求选手甲回答一个问题的正确率;
(2)求选手甲进入决赛的概率;
(3)设选手甲在初赛中答题个数为X,试写出X的分布列,并求甲在初赛中平均答题个数.

查看答案和解析>>

同步练习册答案