精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2+2x-4y+1=0,O为坐标原点,动点P在圆C外,过P作圆C的切线,设切点为M.
(1)若点P运动到(1,3)处,求此时切线l的方程;
(2)求满足条件|PM|=|PO|的点P的轨迹方程.
分析:(1)对切线的斜率是否存在分类讨论,用点斜式求得直线的方程.
(2)设出P的坐标,代入平面内两点间的距离公式,化简得轨迹方程.
解答:解:(1)把圆C的方程化为标准方程为(x+1)2+(y-2)2=4,∴圆心为C(-1,2),半径r=2.
当l的斜率不存在时,此时l的方程为x=1,C到l的距离d=2=r,满足条件.
当l的斜率存在时,设斜率为k,得l的方程为y-3=k(x-1),即kx-y+3-k=0,
|-k-2+3-k|
1+k2
=2,解得k=-
3
4
.∴l的方程为y-3=-
3
4
(x-1),即3x+4y-15=0.
综上,满足条件的切线l的方程为x=1,或3x+4y-15=0.
(2)设P(x,y),则|PM|2=|PC|2-|MC|2=(x+1)2+(y-2)2-4,|PO|2=x2+y2
∵|PM|=|PO|,∴(x+1)2+(y-2)2-4=x2+y2,整理,得2x-4y+1=0,
∴点P的轨迹方程为2x-4y+1=0.
点评:本题主要考查用点斜式求直线的方程,注意分类讨论;直线和圆相切的性质,直线和圆的位置关系,点到直线的距离公式的应用,以及求轨迹方程的方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知圆C:x2+y2=r2(r>0)与抛物线y2=40x的准线相切,若直线l:
x
a
y
b
=1
与圆C有公共点,且公共点都为整点(整点是指横坐标.纵坐标都是整数的点),那么直线l共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4与直线L:x+y+a=0相切,则a=(  )

查看答案和解析>>

同步练习册答案