精英家教网 > 高中数学 > 题目详情
已知Sn为数列{an}的前n项之和,a2=1,对任意的正整数n,都有Sn-2=p(an-2),其中p为常数,且p≠1.
(1)求p的值;(2)求Sn
(1)因为对任意的正整数n,都有Sn-2=p(an-2),
所以,当n=1时,S1=a1,∴a1-2=p(a1-2),
(a1-2)(p-1)=0且p≠1.∴a1=2
由S2-2=a2-2,即a1+a2-2=p(a2-2),a2=1
即p=-1
(Ⅱ)Sn-2=-(an-2)=2-anSn-1-2=2-an-1
两式相减得Sn-Sn-1=an=-an+an-1
∴an=
1
2
an-1,∴an=2×(
1
2
n-1=
1
2n-2

∴Sn=4-an=4-
1
2n-2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设等差数列{an}的前n项和为Sn,已知a3=9,S6=66.
(1)求数列{an}的通项公式an及前n项的和Sn
(2)设数列{
1
anan+1
}
的前n项和为Tn,证明:Tn
1
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列{an}的通项公式是an=
1
n+1
+
n
,若前n项和为3,则项数n的值为(  )
A.14B.15C.16D.17

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}满足a3=7,a5+a7=26,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn=
1
a2n
-1
(n∈N),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}是一个等差数列,且a2=1,a5=-5.
(1)求{an}的通项公式an和前n项和Sn
(2)设Cn=
5-an
2
,bn=2cn求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
2
n•(an+2)
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和为Sn,其中a1=
1
2
,5Sn=7an-an-1+5Sn-1(n≥2);等差数列{bn},其中b3=2,b5=6,.
(1)求数列{an}的通项公式;
(2)若cn=(bn+3)an,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设an=
1
n
sin
25
,Sn=a1+a2+…+an,在S1,S2,…S100中,正数的个数是(  )
A.25B.50C.75D.100

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在实数数列中,已知的最大值为        

查看答案和解析>>

同步练习册答案