精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
ax2-(2a+1)x+2lnx(a>0)

(1)若a=
1
2
,求f(x)在[1,+∞)上的最小值
(2)若a≠
1
2
,求函数f(x)的单调区间;
(3)当
1
2
<a<1
时,函数f(x)在区间[1,2]上是否有零点,若有,求出零点,若没有,请说明理由.
分析:(1)求出f′(x),利用导数符号判断函数单调性,由单调性可求f(x)的最小值;
(2)求出f′(x),解不等式f′(x)>0,f′(x)<0,即可求出f(x)的单调区间;
(3)用导数求出函数f(x)在区间[1,2]上最大值,由最大值符号可作出判断.
解答:解:(1)当a=
1
2
时,f(x)=
1
4
x2-2x+2lnx(x>0)

f′(x)=
x
2
-2+
2
x
=
(x-2)2
2x
≥0,
∴f(x)在[1,+∞)是增函数,
∴f(x)的最小值为f(1)=-
7
4

(2)∵f′(x)=ax-(2a+1)+
2
x
(x>0).   
即 f′(x)=
(ax-1)(x-2)
x
(x>0).  
1
a
-2=
1-2a
a
,∵a>0,a≠
1
2

∴当0<a<
1
2
时,
1
a
>2,由f′(x)>0得0<x<2或x>
1
a
,由f′(x)<0,得2<x<
1
a

当a>
1
2
时,
1
a
<2
,由f′(x)>0得0<x<
1
a
或x>2,由f′(x)<0,得
1
a
<x<,2;
所以当0<a<
1
2
时,f(x)的单调递增区间是(0,2]和[
1
a
,+∞)
,单调递减区间是[2,
1
a
]

a>
1
2
时,f(x)的单调递增区间是(0,
1
a
]
和[2,+∞),单调递减区间是[
1
a
,2]

(3)先求f(x)在x∈[1,2]的最大值.由(2)可知,
1
2
<a<1
时,f(x)在[1,
1
a
]
上单调递增,在[
1
a
,2]
上单调递减,
f(x)max=f(
1
a
)=-2-
1
2a
-2lna

a>
1
2
可知,lna>ln
1
2
>ln
1
e
=-1
,2lna>-2,-2lna<2,
所以-2-2lna<0,则f(x)max<0,
故在区间[1,2]上f(x)<0.恒成立,
故当a>
1
2
时,函数f(x)在区间[1,2]上没有零点.
点评:本题考查函数的零点及应用导数研究函数的单调性问题,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案