精英家教网 > 高中数学 > 题目详情
已知|
a
|=1,|
b
|=2
(1)若
a
b
,求
a
b

(2)若
a
b
的夹角为60°,求|
a
+
b
|.
考点:平面向量数量积的运算
专题:平面向量及应用
分析:(1)利用向量共线定理即可得出;
(2)利用向量数量积的运算性质即可得出.
解答: 解:(1)∵
a
b
,∴
a
b
|
a
||
b
|
=±2;
(2)∵
a
b
的夹角为60°,∴
a
b
=1×2×cos60°=1.
∴|
a
+
b
|=
a
2
+
b
2
+2
a
b
=
12+22+2×1
=
7
点评:本题考查了向量共线定理、向量数量积的运算性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某大学外语系有5名大学生参加南京青奥会翻译志愿者服务,每名大学生都随机分配到奥体中心体操和游泳两个比赛项目(每名大学生只参加一个项目的服务).
(1)求5名大学生中恰有2名被分配到体操项目的概率;
(2)设X,Y分别表示5名大学生分配到体操、游泳项目的人数,记ξ=|X-Y|,求随机变量ξ的分布列和数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是首项为1,公差为2的等差数列,Sn表示{an}的前n项和.
(1)求an及Sn
(2)设数列{
1
Sn
}的前n项和为Tn,求证:当n∈N+都有Tn
n
n+1
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
cos20°
cos35°
1-sin20°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在x轴上的双曲线
x2
a2
-
y2
b2
=1实轴长为4,离心率等于
7
2

(1)写出双曲线方程;
(2)若该双曲线的左、右顶点分别为A1,A2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.求直线A1P与A2Q交点的轨迹E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)的焦点为F1、F2,离心率为
2
2
,通径长(过焦点且垂直于长轴的直线与椭圆相交线段的长)为2
2

(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l与椭圆相交于M(x1,y1)、N(x2,y2)两点,△OMN面积为2
2
,试问x12+x22能否为定值?如果为定值,求出该值;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数
y=g(x)与y=f(x)的图象关于原点对称.求f(x)与g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x-
4
m
|+|x+m|(m>0)
(1)证明:f(x)≥4;
(2)若f(2)>5,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=x-
1
x
(x∈[1,2])的两个端点为A,B,过曲线上任意一点P作x轴的垂线交线段AB于点Q,若不等式|PQ|≤
1
2
k-
2
对x∈[1,2]恒成立,则实数k的最小值为
 

查看答案和解析>>

同步练习册答案