精英家教网 > 高中数学 > 题目详情

【题目】已知正项等比数列{an}满足:a7=a6+2a5 , 若存在两项am , an , 使得aman=16a12 , 则 + 的最小值为(
A.
B.
C.
D.不存在

【答案】A
【解析】解:设正项等比数列{an}的公比为q,易知q≠1,由a7=a6+2a5 , 得到a6q=a6+2 ,解得q=﹣1或q=2, 因为{an}是正项等比数列,所以q>0,因此,q=﹣1舍弃.
所以,q=2
因为aman=16a12 , 所以 ,所以m+n=6,(m>0,n>0),
所以
当且仅当 m+n=6,即m=2,n=4时等号成立.
故选A
应先从等比数列入手,利用通项公式求出公比q,然后代入到aman=16a12中,可得到关于m,n的关系式,再利用基本不等式的知识解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】集合A={(x,y)|y=a},集合B={(x,y)|y=bx+1,b>0,b≠1},若集合A∩B≠,则实数a的取值范围是(
A.(﹣∞,1)
B.(﹣∞,1]
C.[1,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,当点M(x,y)在y=f(x)的图象上运动时,点N(x﹣2,ny)在函数y=gn(x)的图象上运动(n∈N*).
(1)求y=gn(x)的表达式;
(2)若方程g1(x)=g2(x﹣2+a)有实根,求实数a的取值范围;
(3)设 ,函数F(x)=H1(x)+g1(x)(0<a≤x≤b)的值域为 ,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|2a﹣1≤x≤a+3},集合B={x|x<﹣1或x>5}.
(1)当a=﹣2时,求A∩B;
(2)若AB,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中, 平面 ,点在棱上,且.建立如图所示的空间直角坐标系.

(1)当时,求异面直线的夹角的余弦值;

(2)若二面角的平面角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中, .数列的前n项和为,满足

(1)求数列的通项公式;

(2)数列能否为等差数列?若能,求其通项公式;若不能,试说明理由;

(3)若数列是各项均为正整数的递增数列,设,则当 均成等差数列时,求正整数 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥S﹣ABCD中,△ABD是正三角形,CB=CD,SC⊥BD.
(Ⅰ)求证:SB=SD;
(Ⅱ)若∠BCD=120°,M为棱SA的中点,求证:DM∥平面SBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式 <0的解集为(
A.(﹣1,0)∪(1,+∞)
B.(﹣∞,﹣1)∪(0,1)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0),f(2)=0,且方程f(x)=x有等根.
(1)求f(x)的解析式
(2)是否存在常数m,n(m<n),使f(x)的定义域和值域分别是[m,n]和[2m,2n]?如存在,求出m,n的值;如不存在,说明理由.

查看答案和解析>>

同步练习册答案