精英家教网 > 高中数学 > 题目详情
14.一个口袋内装有大小相同的5 个球,其中3个白球分别记为:A1、A2、A3;2个黑球分别记为B1、B2,从中一次摸出2个球.
(Ⅰ)写出所有的基本事件;
(Ⅱ)求摸出2球均为白球的概率.

分析 (Ⅰ)由已知条件利用列举法能求出所有的基本事件.
(Ⅱ)从袋中的5个球中任取2个,所取的2球均为白球的基本事件3种,由此利用等可能事件概率计算公式能求出摸出2球均为白球的概率.

解答 解:(Ⅰ)一个口袋内装有大小相同的5个球,其中3个白球分别记为:A1、A2、A3
2个黑球分别记为B1、B2,从中一次摸出2个球,有如下基本事件:
(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),
(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),
共有10个基本事件.
(Ⅱ)从袋中的5个球中任取2个,所取的2球均为白球的基本事件有:
(A1,A2),(A1,A3),(A2,A3),共3种,
故摸出2球均为白球的概率P=$\frac{3}{10}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在△ABC中,BC边上的高所在直线方程为:x-2y+1=0,∠A的平分线所在直线方程为:y=x+1,若点B的坐标为(1,4),求点A和C的坐际.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知角α的终边经过点P(-3,-$\sqrt{3}$),则sinα=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.等差数列{an}的前n项和为Sn,S12=186,a8=20,则a5=(  )
A.11B.3C.20D.23

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.1+(1+$\frac{1}{2}$)+(1+$\frac{1}{2}$+$\frac{1}{4}$)+…+(1+$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{10}}$)的值为(  )
A.18+$\frac{1}{{2}^{9}}$B.20+$\frac{1}{{2}^{10}}$C.22+$\frac{1}{{2}^{11}}$D.18+$\frac{1}{{2}^{10}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.与函数y=elnx的图象相同的一个函数是(  )
A.y=xB.y=exC.y=|x|D.y=(x${\;}^{\frac{1}{2}}$)-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,A为锐角,B>C,sinA=$\frac{\sqrt{3}}{3}$,则$\frac{cosB}{sinC}$•$\overrightarrow{AB}$+$\frac{cosC}{sinB}•\overrightarrow{AC}$=λsinA•$\overrightarrow{BC}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC中,角A,B,C所对的边分别为a,b,c,外接圆半径是1,且满足条件2(sin2A-sin2C)=(sinA-sinB)b,
求(1)角C的值
(2)△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=-x2+2bx-4与$g(x)=\frac{b}{x+1}$在区间[1,2]上都是减函数,则实数b的取值范围是(  )
A.(0,1)B.(0,1]C.(-1,0)∪(0,1)D.(-1,0)∪(0,1]

查看答案和解析>>

同步练习册答案