精英家教网 > 高中数学 > 题目详情
7.已知等差数列{an}的公差d≠0,其前6项和S6=60,且a1,a6,a21成等比数列,求数列{an}的通项公式.

分析 由题意可得首项和公差的方程组,解方程组可得通项公式.

解答 解:由题意可得S6=6a1+$\frac{6×5}{2}$d=60,∴a1+$\frac{5}{2}$d=10,①
∵a1,a6,a21成等比数列,∴a62=a1a21
∴(a1+5d)2=a1(a1+20d),∴5d=2a1,②
联立①②解得a1=5,d=2,
∴数列{an}的通项公式an=5+2(n-1)=2n+3.

点评 本题考查等差数列的通项公式,求数列的首项和公差是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在△ABC中,已知bcosC+ccosB=2b,
(1)求证:a=2b;
(2)若c=$\sqrt{3}$b,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合M满足{2,3}⊆M⊆{1,2,3,4,5},求集合M及其个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.q求曲线C1:|$\frac{x}{4}$|-|$\frac{y}{2}$|=1与曲线C2:|$\frac{x}{8}$|+|$\frac{y}{2}$|=1所围成图形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|3x-x2>0},B={x∈Z|y=$\sqrt{x-1}$},则A∩B=(  )
A.[1,3)B.(1,3)C.{1,2,3}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆上有两点A(1,-1),B(2,3),且圆心在直线2x-y-1=1上,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.项数是2n的等差数列,中间两项为an和an+1是方程x2-px+q=0的两根,求证:此数列的和S2n是方程lg2x-(lgn2+lgp2)lgx+(lgn+lgp)2=0的两根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.化简下列各式:
(1)$\frac{\sqrt{1-2cos5°sin5°}}{cos5°-\sqrt{1-co{s}^{2}5°}}$;
(2)($\frac{1}{sinα}$+$\frac{1}{tanα}$)(1-cosα).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=3x-1,求f(0)•f(a)的值.

查看答案和解析>>

同步练习册答案