精英家教网 > 高中数学 > 题目详情
(2009•嘉定区一模)(文)已知函数f(x)=x2+x+a-1在区间[0,1]上的最小值为0,则a的值为
1
1
分析:配方法得到函数的对称轴为x=.1,判断出f(x)在区间[0,1]上递增,从而求得函数的最小值,列出方程求出a.
解答:解:∵f(x)=x2+x+a-1=(x+
1
2
)
2
+a-
5
4

∴f(x)对称轴为x=-
1
2

所以f(x)在区间[0,1]上递增,
所以当x=0时,f(x)有最小值a-1
所以a-1=0
所以a=1
故答案为1.
点评:配方求得函数的对称轴是解题的关键.由于对称轴所含参数不确定,而给定的区间是确定的,这就需要分类讨论.利用函数的图象将对称轴移动,合理地进行分类,从而求得函数的最值,当然应注意若求函数的最大值,则需按中间偏左、中间偏右分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•嘉定区一模)数列{an}中,若a1=
1
2
an=
1
1-an-1
,(n≥2,n∈N),则a2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•嘉定区一模)(理)已知函数y=(
1
2
)x
的图象与函数y=logax(a>0且a≠1)的图象交于点P(x0,y0),如果x0≥2,那么a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•嘉定区一模)设α是第四象限角,tanα=-
3
4
,则sin2α=
-
24
25
-
24
25

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•嘉定区一模)如图,学校现有一块三角形空地,∠A=60°,AB=2,AC=3(单位:m),现要在此空地上种植花草,为了美观,用一根条形石料DE将空地隔成面积相等的两部分(D在AB上,E在AC上).
(1)设AD=x,AE=y,求用x表示y的函数y=f(x)的解析式,并写出f(x)的定义域;
(2)如何选取D、E的位置,可以使所用石料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•嘉定区一模)函数f(x)=(x-1)2(x≥1)的反函数f-1(x)=
x
+1
(x≥0)
x
+1
(x≥0)

查看答案和解析>>

同步练习册答案