分析 由分段函数得f(ln$\frac{1}{4}$)=f(1+ln$\frac{1}{4}$)=f(2+ln$\frac{1}{4}$)=${e}^{(2+ln\frac{1}{4})}$,由此能求出结果.
解答 解:∵函数f(x)=$\left\{{\begin{array}{l}{{e^x},x>0}\\{f(x+1),x≤0}\end{array}}$,
∴f(ln$\frac{1}{4}$)=f(1+ln$\frac{1}{4}$)=f(2+ln$\frac{1}{4}$)
=${e}^{(2+ln\frac{1}{4})}$=${e}^{2}×{e}^{ln\frac{1}{4}}$=$\frac{e^2}{4}$.
故答案为:$\frac{{e}^{2}}{4}$.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{5π}{12}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{\sqrt{10}}{10}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,1,2,3,5} | B. | {1,2,3} | C. | {0,1} | D. | {1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{2}{5}$i | B. | $\frac{2}{5}i$ | C. | $\frac{4}{5}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{3+2\sqrt{2}}}{4}$ | C. | $\frac{{3+\sqrt{2}}}{4}$ | D. | $\frac{{3-\sqrt{2}}}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com