| A. | [6,8) | B. | [6,8] | C. | [4,6) | D. | (4,6] |
分析 利用三角函数恒等变换的应用化简已知可得sin(A+$\frac{π}{3}$)=$\frac{{\sqrt{3}}}{2}$,结合A的范围可求A,再由余弦定理求得a2=16-3bc,再由基本不等式,求得bc的范围,即可得到a的范围,进而可求周长的范围.
解答 解:∵sinA+cos(A+$\frac{π}{6}$)=$\frac{{\sqrt{3}}}{2}$,
∴sinA+$\frac{\sqrt{3}}{2}$cosA-$\frac{1}{2}$sinA=$\frac{{\sqrt{3}}}{2}$,可得:sin(A+$\frac{π}{3}$)=$\frac{{\sqrt{3}}}{2}$,
∵A∈(0,π),A+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{4π}{3}$),
∴A+$\frac{π}{3}$=$\frac{2π}{3}$,解得A=$\frac{π}{3}$,
∵b+c=4,
∴由余弦定理可得a2=b2+c2-2bccosA=(b+c)2-2bc-bc=16-3bc,
∵由b+c=4,b+c≥2$\sqrt{bc}$,得0<bc≤4,
∴4≤a2<16,即2≤a<4.
∴△ABC周长L=a+b+c=a+4∈[6,8).
故选:A.
点评 本题主要考查了三角函数恒等变换的应用,余弦定理及运用,同时考查基本不等式的运用,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,6] | B. | [0,6] | C. | [$\frac{2}{3}$,6] | D. | [1,6] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com