精英家教网 > 高中数学 > 题目详情
17.已知角α的终边落在直线y=-2x上,则tanα的值为(  )
A.2B.-2C.±2D.$\frac{1}{2}$

分析 由条件利用任意角的三角函数的定义,求得tanα的值.

解答 解:角α的终边落在直线y=-2x上,在直线y=-2x上任意取一点(a,-2a),a≠0,
则由任意角的三角函数的定义可得tanα=$\frac{y}{x}$=$\frac{-2a}{a}$=-2,
故选:B.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{{k}^{2}x+k(1-{a}^{2}),x≥0}\\{{x}^{2}+({a}^{2}-6a+8)x+(3-a)^{2},x<0}\end{array}\right.$,其中a∈R.若对任意的非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则k的取值范围是k<0或k≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设D为△ABC所在平面内一点,$\overrightarrow{BC}$=3$\overrightarrow{CD}$,若$\overrightarrow{AD}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则x+y=(  )
A.1B.$\frac{5}{3}$C.-1D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.边长为4的等边△ABC中,$\overrightarrow{AB}$•$\overrightarrow{BC}$的值为(  )
A.8B.-8C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>0)的一个焦点为F(-1,0),左右顶点分别为A,B,经过点F的直线l与椭圆M交于C,D两点.
(Ⅰ)求椭圆方程;
(Ⅱ)记△ABD与△ABC的面积分别为S1和S2,求|S1-S2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,角A,B,C所对的边分别为a,b,c,若sinA+cos(A+$\frac{π}{6}$)=$\frac{{\sqrt{3}}}{2}$,b+c=4,则△ABC周长的取值范围是(  )
A.[6,8)B.[6,8]C.[4,6)D.(4,6]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=xn的图象过点(3,$\sqrt{3}$),则n=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:
①函数y=f(x)必有两个相异的零点;
②函数y=f(x)只有一个极值点;
③y=f(x)在x=0处切线的斜率小于零;
④y=f(x)在区间(-3,1)上单调递增.
则正确命题的序号是(  )
A.①④B.②④C.②③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中正确的个数是(  )
①有两个面平行,其余各面都是平行四边形的几何体叫棱柱;
②若直线l上有无数个点不在平面α内,则l∥α;
③如果直线a,b和平面α满足a∥α,b∥α,那么a∥b;
④如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,则l⊥γ
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案