解:(1)令

,解得-1<x<1,即函数f(x)的定义域为(-1,1),关于原点对称.
又f(-x)=

=

=-

=-f(x),
所以f(x)为奇函数,
所以

=

-

=0.
(2)设-1<x
1<x
2<1,
则

-

=

.
因为-1<x
1<x
2<1,
所以

-

>0,即

>

.
所以

在(-1,1)上为减函数,也在(-t,t]上为减函数,
①当a>1时,y=log
at单调递增,t=

单调递减,所以y=

在(-t,t]上单调递减,
此时f(x)存在最小值为f(t)=

.
②当0<a<1时,y=log
at单调递减,t=

单调递减,所以y=

在(-t,t]上单调递增,
此时f(x)不存在最小值.
综①②知,当a>1时,f(x)存在最小值为f(t)=

.
(3)f(x-2)+f(4-3x)≥0可化为f(x-2)≥-f(4-3x),
由(1)知f(x)为奇函数,所以f(x-2)≥f(3x-4),
①当a>1时,由(2)知f(x)在(-1,1)上为减函数,
所以

,解得1<x<

.
②当0<a<1时,由(2)知f(x)在(-1,1)上为增函数,
所以

,解得为∅.
综①②得满足不等式f(x-2)+f(4-3x)≥0的x的范围为:(1,

).
分析:(1)由所求表达式的特点知,可判断函数的奇偶性;
(2)根据复合函数单调性的判定方法判断f(x)的单调性,由单调性可讨论f(x)的最小值情况;
(3)利用f(x)的奇偶性把f(x-2)+f(4-3x)≥0可化为f(x-2)≥f(3x-4),再利用f(x)的单调性即可解出不等式.
点评:本题考查函数的奇偶性、单调性及其应用,考查抽象不等式的求解,考查学生分析问题解决问题的能力.