如图,在直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.
(1)证明:BC1∥平面A1CD;
(2)求二面角D-A1C-E的正弦值.
(1)见解析(2)
【解析】(1)连接AC1交A1C于点F,则F为AC1的中点.
又D是AB的中点,连接DF,则BC1∥DF.
因为DF?平面A1CD,BC1?平面A1CD,所以BC1∥平面A1CD.
(2)由AC=CB=AB,得AC⊥BC.
以C为坐标原点,的方向为x轴正方向,的方向为y轴正方向,的方向为z轴正方向,建立如图所示的空间直角坐标系C -xyz.
设CA=2,则D(1,1,0),E(0,2,1),A1(2,0,2),
=(1,1,0),=(0,2,1),=(2,0,2).
设n=(x1,y1,z1)是平面A1CD的法向量,
则即可取n=(1,-1,-1).
同理,设m=(x2,y2,z2)是平面A1CE的法向量,
则即可取m=(2,1,-2).
从而cos〈n,m〉==,故sin〈n,m〉=.
即二面角D-A1C-E的正弦值为.
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练选修4-1练习卷(解析版) 题型:填空题
如图,已知Rt△ABC的两条直角边AC,BC的长分别为3 cm,4 cm,以AC为直径的圆与AB交于点D,则=________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-6-3练习卷(解析版) 题型:选择题
已知双曲线C1:=1(a>0,b>0)的离心率为2.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为 ( ).
A.x2=y B.x2=y C.x2=8y D.x2=16y
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-6-1练习卷(解析版) 题型:解答题
在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.
(1)求圆C的方程;
(2)若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-6-1练习卷(解析版) 题型:选择题
已知圆的方程为x2+y2-6x-8y=0,设该圆中过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是( ).
A.10 B.20
C.30 D.40
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-5-3练习卷(解析版) 题型:选择题
过正方形ABCD的顶点A,引PA⊥平面ABCD.若PA=BA,则平面ABP和平面CDP所成的二面角的大小是( ).
A.30° B.45° C.60° D.90°
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-5-2练习卷(解析版) 题型:填空题
如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是________(写出所有正确命题的编号).
①当0<CQ<时,S为四边形;
②当CQ=时,S为等腰梯形;
③当<CQ<1时,S为六边形;
④当CQ=1时,S的面积为.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-5-1练习卷(解析版) 题型:选择题
一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,则该四棱锥侧面积和体积分别是( ).
A.4,8 B.4, C.4(+1), D.8,8
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-3-1练习卷(解析版) 题型:选择题
已知ω>0,函数f(x)=sin 在上单调递减,则ω的取值范围是( ).
A. B. C. D.(0,2]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com