精英家教网 > 高中数学 > 题目详情
15.若直线(a-2)x-y+3=0的倾斜角为45°,则实数a的值为3.

分析 由题中线的倾斜角和斜率的关系得到a.

解答 解:因为直线(a-2)x-y+3=0的倾斜角为45°,所以直线的斜率为tan45°=a-2=1,所以a=3;
故答案为:3.

点评 本题考查了直线的倾斜角.直线的倾斜角为α,那么它的斜率为tanα(α≠90°).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在面积为S的△ABC的边AB含任取一点P,则△PBC的面积大于$\frac{S}{4}$的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直线l:x+4y=2与圆C:x2+y2=1交于A、B两点,O为坐标原点,若直线OA、OB的倾斜角分别为α、β,则cosα+cosβ=$\frac{4}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,E是边AC的中点,$\overrightarrow{BC}$=4$\overrightarrow{BD}$,若$\overrightarrow{DE}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则x+y=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设α∈(0,$\frac{π}{3}$),满足$\sqrt{3}$sinα+cosα=$\frac{\sqrt{6}}{2}$.
(1)求cos(α+$\frac{π}{6}$)的值;
(2)求cos(2α+$\frac{7}{12}$π)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若点A(-6,y)在抛物线y2=-8x上,F为抛物线的焦点,则AF的长度为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=ax+$\frac{a}{x}$,g(x)=ex-3ax,a>0,若对?x1∈(0,1),存在x2∈(1,+∞),使得方程f(x1)=g(x2)总有解,则实数a的取值范围为[$\frac{e}{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.数列{an}中,a3=1,a5=1,如果数列{$\frac{1}{{a}_{n}+1}$}是等差数列,则a11=(  )
A.1B.$\frac{1}{11}$C.-$\frac{1}{13}$D.-$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知曲线C的极坐标方程是ρ-2sinθ=0,以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l过点M(1,0),倾斜角为$\frac{2π}{3}$.
(1)求曲线C的直角坐标方程与直线l的参数方程;
(2)设直线l与曲线C交于A,B两点,求|MA|+|MB|的值.

查看答案和解析>>

同步练习册答案