精英家教网 > 高中数学 > 题目详情
半径为4的球面上有A,B,C,D四个点,且满足
AB
AC
=0,
AC
AD
=0,
AD
AB
=0
,则S△ABC+S△ACD+S△ADB的最大值为
 
分析:由题意,三棱锥为长方体的一个角,把三棱锥扩展为长方体,二者的外接球相同,设出长方体的三度,利用长方体的对角线就是球的直径,得到关系,利用基本不等式推出所求面积的最大值即可.
解答:解:半径为4的球面上有A,B,C,D四个点,且满足
AB
AC
=0,
AC
AD
=0,
AD
AB
=0

所以三棱锥是长方体的一个角,把这个四面体补全为一个立方体.
立方体必然是有外接球的,而外接球唯一,就是题目中的外接球.
设长方体的长:x,宽为:y,高为:z,故x2+y2+z2=82=64
另有不等式x2+y2+z2≥xy+yz+zx
故而所求面积=
1
2
(xy+yz+zx)≤
1
2
•64=32
当x=y=z时取到.
故答案为:32
点评:本题考查球内接多面体,球的性质,考查空间想象能力,计算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

半径为4的球面上有A、B、C、D四点,AB,AC,AD两两互相垂直,则△ABC、△ACD、△ADB面积之和S△ABC+S△ACD+S△ADB的最大值为(  )
A、8B、16C、32D、64

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在半径为4的球面上有A、B、C、D四个点,且AB=CD=4,则四面体ABCD体积最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•桂林一模)半径为4的球面上有A,B,C,D四点,且满足AB⊥AC,AC⊥AD,AD⊥AB,则S△ABC+S△ACD+S△ADB的最大值为(S为三角形的面积)
32
32

查看答案和解析>>

科目:高中数学 来源: 题型:

半径为4的球面上有A、B、C、D四点,且AB、AC、AD两两互相垂直,则△ABC,△ACD,△ADB面积之和的最大值是
32
32

查看答案和解析>>

科目:高中数学 来源: 题型:

半径为4的球面上有A、B、C、D四个点,且满足
AB
?
AC
=0,
AC
?
AD
=0,
AD
?
AB
=0,则S△ABC+S△ACD+S△ADB的最大值为(  )
A、64B、32C、16D、8

查看答案和解析>>

同步练习册答案