精英家教网 > 高中数学 > 题目详情
函数y=x-
1-x
的值域为(  )
A、(-∞,1)
B、(-∞,1]
C、(0,1]
D、[0,1]
考点:函数的值域
专题:函数的性质及应用
分析:运用换元法t=
1-x
,转化为二次函数求解,注意变量的范围.
解答: 解:设t=
1-x
,则y=-t2-t+1,t≥0,
∵对称轴为t=-
1
2
,可知;在[0,+∞)上为单调递减函数,
∴当t=0时,y的最大值为1,
即函数y=x-
1-x
的值域为(-∞,1],
故选:B
点评:本题考查了运用换元法,转化为二次函数的问题来解决,此类型题,要特别注意心自变量的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某县位于沙漠边缘地带,人与自然长期进行顽强的斗争,到2009年底全县的绿化率已达到30%,从2009年开始,每年将出现这样的局面:原有沙漠面积的16%被栽上树,改造成绿洲,而同时原有绿洲面积的4%又被侵蚀,变成沙漠.
(1)设全县面积为1,2009年底绿洲面积a1=
3
10
,经过一年(指2010年底)绿洲面积为a2,经过n年绿洲面积为an+1,求证:an+1=
4
5
an+
4
25

(2)问至少经过多少年的努力才能使全县绿洲面积超过60%(年取整数,lg2≈0.3010).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.
(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则2q=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点(3,9)关于直线x+3y-10=0对称的点的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

P,Q分别为直线3x+4y-12=0与6x+8y+5=0上任意一点,则|PQ|的最小值为(  )
A、
9
5
B、
18
5
C、
29
10
D、
29
5

查看答案和解析>>

科目:高中数学 来源: 题型:

三角形的三个顶点是A(4,0),B(2,4),C(0,3).
(1)求AB边的中线所在直线l1的方程;
(2)求BC边的高所在直线l2的方程;
(3)求直线l1与直线l2的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数a、b、c成等比数列,非零实数x,y分别为a与b,b与c的等差中项,则下列结论正确的是(  )
A、
a
x
+
c
y
=1
B、
a
x
+
c
y
=2
C、ax+cy=1
D、ax+cy=2

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程
x2
|a|-1
+
y2
a+3
=1表示焦点在x轴上的椭圆,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案