精英家教网 > 高中数学 > 题目详情
已知P:(2x-3)2<1,Q:x(x-3)<0,则P是Q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据不等式的解法以及充分条件和必要条件的定义进行判断即可.
解答: 解:由(2x-3)2<1,即-1<2x-3<1,即1<x<2,即P:1<x<2
由x(x-3)<0,得0<x<3,即Q:0<x<3,
则P是Q的充分不必要条件,
故选:A
点评:本题主要考查充分条件和必要条件的判断,根据不等式的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数学题在△ABC中,点B(-12,0),C(12,0),且AC,AB边上的中线长之和等于39,则△ABC的重心的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=|2x-1|+|1-x|.
(1)解不等式f(x)≤3x+4;
(2)对任意的x,不等式f(x)≥(m2-3m+3)•|x|恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线x2=y的焦点坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1),函数y=g(x)的图象与函数f(x)的图象关于原点对称.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)若a>1,x∈[0,1)时,总有F(x)=f(x)+g(x)≥m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高一学生工500名,经调查,喜欢数学的学生占全体学生的30%,不喜欢数学的人数占40%,介于两者之间的学生占30%.为了考察学生的期中考试的数学成绩,如何用分层抽样抽取一个容量为50的样本.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x-
π
3
).
(1)用五点法画出函数f(x)在一个周期内的图形;
(2)写出函数f(x)的最小正周期,单调增区间;
(3)若函数y=af(x)+b在区间[0,
π
2
]上的值域是[0,1],求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面直角坐标系中,双曲线方程
x2
m2
-
y2
n2
=1(m,n>0),A,C是双曲线的两焦点,B是双曲线上的点,在△ABC中,|
sinA-sinB
sinC
|=
1
2
,则双曲线的离心率为(  )
A、
1
2
B、2
C、3
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

对于项数为m的有穷数列{an},记bk=max{a1,a2,…ak},即bk为a1,a2,…ak中的最大值,并称数列{bn}是{an}的“控制数列”,如1,3,2,5,5的控制数列为1,3,3,5,5.
(1)若各项均为正整数的数列{an}的控制数列为2,3,4,5,5,则这样的数列{an}有
 
个;
(2)设m=100,常数a∈(
1
2
,1),若an=an2-(-1)
n(n+1)
2
•n,{bn}是{an}的控制数列,则(b1-a1)+(b2-a2)+…+(b100-a100)=
 

查看答案和解析>>

同步练习册答案