精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)和y=g(x)在[-2,2]的图象如图所示:

给出下列四个命题:
①方程g[g(x)]=0有且仅有3个根      ②方程g[f(x)]=0有且仅有4个根  
③方程f[f(x)]=0有且仅有5个根      ④方程f[g(x)]=0有且仅有6个根.
其中正确的命题的序号是
②③④
②③④
分析:把复合函数的定义域和值域进行对接,看满足外层函数为零时内层函数有几个自变量与之相对应.通过f(x)=0可知函数有三个解,g(x)=0有2个解,具体分析①②③④推出正确结论.
解答:解:由图象可得-2≤g(x)≤2,-2≤f(x)≤2,
①由于满足方程g[g(x)]=0 的g(x)值有2个,
而结合图象可得,每个g(x)值对应2个不同的x值,
故满足方程g[g(x)]=0 的x值有4个,
即方程g[g(x)]=0有且仅有4个根,故①不正确;
②满足g(x)=0的有两个,一个值处于-2与-1间,另一个值处于0与1间,由图象可知,满足f(x)值为该两值的有1+3=4个点,因此该方程有且仅有4个根.
故②正确.
③由于满足方程f[f(x)]=0的f(x)有3个不同的值,从图中可知,一个f(x)等于0,
一个f(x)∈(-2,-1),一个f(x)∈(1,2).
而当f(x)=0对应了3个不同的x值;当f(x)∈(-2,-1)时,只对应一个x值;
当f(x)∈(1,2)时,也只对应一个x值.
故满足方程f[f(x)]=0的x值共有5个,故③正确.
④由于满足方程f[g(x)]=0 的g(x)有三个不同值,由于每个值g(x)对应了2个x值,
故满足f[g(x)]=0的x值有6个,即方程f[g(x)]=0有且仅有6个根,故④正确.
故答案为:②③④.
点评:本题考查根的存在性及根的个数判断,函数的图象,考查逻辑思维能力及识别图象的能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案