精英家教网 > 高中数学 > 题目详情
奇函数f(x)(x∈R)满足:f(-4)=0,且在区间[0,3]与[3,+∞)上分别递减和递增,则不等式(x2-4)f(x)<0的解集为
(-∞,-4)∪(-2,0)∪(2,4)
(-∞,-4)∪(-2,0)∪(2,4)
分析:由题意,可先研究奇函数f(x)(x∈R)的特征,得出f(x)<0的解集与f(x)>0的解集,再研究x2-4符号为正时x的取值范围与符号为负时x的取值范围,不等式(x2-4)f(x)<0说明(x2-4)与f(x)符号相反,由此判断出不等式的解集即可得到答案
解答:解:由题意奇函数f(x)(x∈R)满足:f(-4)=0,且在区间[0,3]与[3,+∞)上分别递减和递增
可得f(4)=0
由上知,当x≥0时,f(x)<0的解集(0,4),f(x)>0的解集(4,+∞),
由于函数是奇函数,故当x<0时,f(x)<0的解集(-∞,-4),f(x)>0的解集(-4,0),
令x2-4>0解得x>2或x<-2
∴不等式(x2-4)f(x)<0的解集为(-∞,-4)∪(-2,0)∪(2,4)
故答案为(-∞,-4)∪(-2,0)∪(2,4)
点评:本题考点是奇偶性与单调性的综合,考查了奇函数的对称性,函数单调性及由题设条件判断函数值的符号,解题的关键是理解两个因子乘积小于0,则两者的符号相反,本题考查了判断推理的能力及数形结合的思想,是函数性质考察的经典题,在高考中也多有出现.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足f(2-x)=f(x),当x∈[0,1]时,f(x)=
x
.又g(x)=cos
πx
2
,则集合{x|f(x)=g(x)}等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在[-1,1]上的奇函数f(x),当-1≤x<0时,f(x)=-
2x
4x+1

(Ⅰ)求f(x)在[-1,1]上解析式;
(Ⅱ)判断f(x)在(0,1)上的单调性,并给予证明;
(Ⅲ)当x∈(0,1]时,关于x的方程
2x
f(x)
-2x+λ=0
有解,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面对命题“函数f(x)=x+
1
x
是奇函数”的证明不是综合法的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•台州一模)已知定义在R上的奇函数f(x),当x>0时,f(x)=ex(e为自然对数的底数),则当x<0时,f(x)=
-e-x
-e-x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则当x∈[-4,4]时不等式x?f′(x)<0的解集为(  )
A、(-2,0)∪(2,4)B、(-4,-2)∪(0,2)C、(-2,0)D、(0,2)

查看答案和解析>>

同步练习册答案