精英家教网 > 高中数学 > 题目详情
下面对命题“函数f(x)=x+
1
x
是奇函数”的证明不是综合法的是(  )
分析:数学中的综合法就是根据已知的条件、定理、公理和已知的结论,经过严密的推理,推出要征得结论,其显著的特征是“由因导果”.
解答:解:数学中的综合法就是根据已知的条件、定理、公理和已知的结论,经过严密的推理,推出要征得结论,
其显著的特征是“由因导果”,
前三个选项中对命题“函数f(x)=x+
1
x
是奇函数”的证明都是:“由因导果”,“由因导果”,
选项D属于不完全归纳法.
故选D.
点评:本题考查数学中的综合法的定义,及其显著特征,掌握综合法的定义,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•绵阳二模)已知函数f(x),若对给定的三角形ABC,它的三边的长a、b、c均在函数f(x)的定义域内,都有f(a)、f(b)、f(c)也为某三角形的三边的长,则称f(x)是△ABC的“三角形函数”.下面给出四个命题:
①函数f1(x)=
x
,x∈(0,+∞)是任意三角形的“三角形函数”;
②若定义在(O,+∞)上的周期函数f2(x)的值域也是(0,+∞),则f2(x)是任意三角形的“三角形函数”;
③若函数f3(x)=x3-3x+m在区间(
2
3
4
3
)上是某三角形的“三角形函数”,则m的取值范围是(
62
27
,+∞)
④若a、b、c是锐角△ABC的三边长,且a、b、c∈N+,则f4(x)=x2+lnx(x>0)是△ABC的“三角形函数”.
以上命题正确的有
①④
①④
(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)若对于定义在R上的函数f(x),存在常数t(t∈R),使得f(x+t)+tf(x)=0对任意实数x均成立,则称f(x)是阶回旋函数,则下面命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面对命题“函数f(x)=x+
1
x
是奇函数”的证明不是综合法的是(  )
A.?x∈R且x≠0有f(-x)=(-x)+
1
-x
=-(x+
1
x
)=-f(x),∴f(x)是奇函数
B.?x∈R且x≠0有f(x)+f(-x)=x+
1
x
+(-x)+(-
1
x
)=0,∴f(x)=-f(-x),∴f(x)是奇函数
C.?x∈R且x≠0,∵f(x)≠0,∴
f(-x)
f(x)
=
-x-
1
x
x+
1
x
=-1,∴f(-x)=-f(x),∴f(x)是奇函数
D.取x=-1,f(-1)=-1+
1
-1
=-2,又f(1)=1+
1
1
=2

查看答案和解析>>

科目:高中数学 来源:《2.2 综合法与分析法》2013年同步练习(解析版) 题型:选择题

下面对命题“函数f(x)=x+是奇函数”的证明不是综合法的是( )
A.?x∈R且x≠0有f(-x)=(-x)+=-(x+)=-f(x),∴f(x)是奇函数
B.?x∈R且x≠0有f(x)+f(-x)=x++(-x)+(-)=0,∴f(x)=-f(-x),∴f(x)是奇函数
C.?x∈R且x≠0,∵f(x)≠0,∴==-1,∴f(-x)=-f(x),∴f(x)是奇函数
D.取x=-1,f(-1)=-1+=-2,又f(1)=1+=2

查看答案和解析>>

同步练习册答案