精英家教网 > 高中数学 > 题目详情
15.曲线f(x)=x2ex+x+3在点(0,3)处的切线方程是y=x+3.

分析 求出导数,求得切线的斜率,由斜截式方程,即可得到切线的方程.

解答 解:f(x)=x2ex+x+3的导数为
f′(x)=(2x+x2)ex+1,
在点(0,3)处的切线斜率为k=1,
即有在点(0,3)处的切线方程为y=x+3.
故答案为:y=x+3.

点评 本题考查导数的运用:求切线的方程,考查直线方程的运用,正确求导是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.将(x+y)5-x5-y5分解因式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知平面区域M={(x,y)|x2+y2≤4},N={(x,y)|$\left\{\begin{array}{l}{y≥mx+2m}\\{{x}^{2}+{y}^{2}≤4}\end{array}\right.$},在区域M上随机取一点A,A落在区域N内的概率为P(N),若P(N)∈[$\frac{1}{2}$,$\frac{3π+2}{4π}$],则实数m的取值范围是(  )
A.[0,1]B.[-$\frac{\sqrt{3}}{3}$,0]C.[-1,1]D.[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知一个几何体的主视图及左视图均是边长为2的正三角形,俯视图是直径为2的圆,则此几何体的外接球的表面积为(  )
A.$\frac{4}{3}$πB.$\frac{8}{3}$πC.$\frac{16}{3}$πD.$\frac{32}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|y=log(x-1)(4-x)},B={y|y=log2(8-x2)},全集U=R,
(1)求A∩B;
(2)求(∁UA)∩(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.证明:函数f(x)=$\sqrt{{x}^{2}+1}$-x在其定义域内为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.确定下列每组两个集合的包含关系或相等关系:
(1)A={n|n为12的正约数}与B={1,3,2,4,6,12};
(2)C={m|m=2k,k∈N*}与D={m|m为4的正整数倍数}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=ax2-x+2a-1在[1,2]上的最小值为t,若t≤1恒成立,则实数a的取值范围是a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某四棱锥的三视图如图所示,则该四棱锥的体积为16.

查看答案和解析>>

同步练习册答案