精英家教网 > 高中数学 > 题目详情
3.已知m∈R,复数$z=\frac{m(m+2)}{m-1}+({m^2}+2m-1)i$,当m为何值时:
(1)z∈R;
(2)z是虚数;
(3)z是纯虚数.

分析 (1)根据虚部为零,列出方程进行求解;
(2)令它的实部为不为零,虚部不为零,列出方程及不等式进行求解;
(3)根据实部为零,虚部不为零列出不等式组进行求解即可.

解答 解:(1)当z∈R,当$\left\{\begin{array}{l}{{m}^{2}+2m-1=0}\\{m-1≠0}\end{array}\right.$,解得m=-1±$\sqrt{2}$,
∴当m=-1±$\sqrt{2}$,z是实数;
(2)当z是虚数时,则有$\left\{\begin{array}{l}{m-1≠0}\\{{m}^{2}+2m-1≠0}\end{array}\right.$,解得m≠-1±$\sqrt{2}$且m≠1
即m≠-1±$\sqrt{2}$且m≠1,z是虚数;
(3)当z是纯虚数时,则有$\left\{\begin{array}{l}{m-1≠0}\\{m(m+2)=0}\end{array}\right.$,且m2+2m-1≠0,解得m=0或m=-2.
即m=0或m=-2,z是纯虚数.

点评 本题考查了复数的基本概念,考查复数的几何意义,解题的关键是理解复数的分类及复数的几何意义:复数与平面内的点一一对应.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知直线l在y轴上的截距是-3,它被两坐标轴截得的线段的长为5,则此直线的方程是3x-4y-12=0或3x+4y+12=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将两个数a=2017,b=2018交换使得a=2018,b=2017,下面语句正确一组是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+x
(1)求f'(x);
(2)求函数f(x)=x2+x在x=2处的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.($\frac{-1+\sqrt{3}i}{2}$) 6+( $\frac{-1-\sqrt{3}i}{2}$) 6=2;若 n 为奇数,则($\frac{1+i}{\sqrt{2}}$) 4n+($\frac{1-i}{\sqrt{2}}$) 4n=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个箱子中有4个白球和3个黑球,一次摸出2个球,在已知它们颜色相同的情况下,这两个球的颜色是白色的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,从A→C有6种不同的走法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名维修工人进行维修,每台机器出现故障需要维修的概率为$\frac{1}{3}$.
(Ⅰ)若出现故障的机器台数为x,求x的分布列;
(Ⅱ)该厂至少有多少名维修工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?
(Ⅲ)已知一名维修工人每月只有维修1台机器的能力,每月需支付给每位维修工人1万元的工资,每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润,若该厂现有2名维修工人,求该厂每月获利的均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.用“五点法”作函数y=-sinx,x∈[0,2π]的简图.
(1)列表
x
sinx
-sinx
(2)描点作图.

查看答案和解析>>

同步练习册答案