精英家教网 > 高中数学 > 题目详情
15.已知四边形ABCD为正方形,$\overline{BP}$=3$\overline{CP}$,AP与CD交于点E,若$\overline{PE}$=m$\overrightarrow{PC}$+n$\overline{PD}$,则m-n=(  )
A.-$\frac{2}{3}$B.$\frac{2}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

分析 可以画出图形,根据条件$\overrightarrow{CD}=3\overrightarrow{CE}$,从而根据向量减法的几何意义便可得到$\overrightarrow{PD}-\overrightarrow{PC}=3(\overrightarrow{PE}-\overrightarrow{PC})$,这样可以求出向量$\overrightarrow{PE}$,这样根据平面向量基本定理便可得出m-n的值.

解答 解:如图,
$\overrightarrow{BP}=3\overrightarrow{CP}$;
∴BP=3CP;
∴AB=3CE=CD;
∴$\overrightarrow{CD}=3\overrightarrow{CE}$;
∴$\overrightarrow{PD}-\overrightarrow{PC}=3(\overrightarrow{PE}-\overrightarrow{PC})$;
∴∴$\overrightarrow{PE}=\frac{2}{3}\overrightarrow{PC}+\frac{1}{3}\overrightarrow{PD}$
又$\overrightarrow{PE}=m\overrightarrow{PC}+n\overrightarrow{PD}$;
∴由平面向量基本定理得,$\left\{\begin{array}{l}{m=\frac{2}{3}}\\{n=\frac{1}{3}}\end{array}\right.$;
∴$m-n=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$.
故选D.

点评 考查相似三角形的对应边的比例关系,向量数乘、减法的几何意义,以及向量数乘的运算,平面向量基本定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在一张纸上画一个圆,圆心为O,半径为R,并在圆O外设置一个定点F,折叠纸片使圆周上某一点M与F重合,抹平纸片得一折痕AB,连结MO并延长交AB于点P,当点M在圆O上运动时,直线AB与P点轨迹的公共点的个数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,-3),$\overrightarrow{c}$=(3,0),且$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,求x,y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设命题p:在直角坐标平面内,点M(sinα,cosα)与N(|α+1|,|α-2|)(α∈R)在直线x+y-2=0的异侧;命题q:若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$>0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角.以下结论正确的是(  )
A.“p∨q”为真,“p∧q”为真B.“p∨q”为假,“p∧q”为真”
C.“p∨q”为真,“p∧q”为假”D.“p∨q”为假,“p∧q”为假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合A={x∈Z||x-1|<1},则A的子集个数共有(  )
A.0个B.1个C.2个D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.阅读如图所示的程序框图,运行相应的程序,若输入x值为-4,则输出y值是(  )
A.7B.4C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的单调区间.
(1)y=cos4x;
(2)y=3sinx-cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow m=(a,b)$,$\overrightarrow{n}$=(2sinx,2cosx),其中a,b,x∈R.若f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,满足f($\frac{π}{3}$)=2,且f(x)的导函数f′(x)的图象关于直线x=$\frac{5π}{6}$对称.
(1)求a,b的值;
(2)若关于x的方程f(x)+log2k=0在区间[0,$\frac{π}{2}$]上总有实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列命题中的说法正确的是(  )
A.若向量$\overrightarrow{a}$∥$\overrightarrow{b}$,则存在唯一的实数λ使得$\overrightarrow a=λ\overrightarrow b$
B.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
C.命题“?x0∈R,使得${x_0}^2+{x_0}+1<0$”的否定是:“?x∈R,均有x2+x+1≥0”
D.“a≠5且b≠-5”是“a+b≠0”的充分不必要条件

查看答案和解析>>

同步练习册答案