精英家教网 > 高中数学 > 题目详情

C22+C32+C42+…+C1002的值为


  1. A.
    2C1013
  2. B.
    2C1003
  3. C.
    C1013
  4. D.
    A1003
C
分析:利用组合数公式的性质Cn+13-cn3=Cn2,可得 C22+C32+C42+…+C1002 =C33 +(C43-C33)+(C53-C43)+…+(C1013-C1003),化简得到结果.
解答:∵Cn+13-cn3=Cn2
∴C22+C32+C42+…+C1002 =C33 +(C43-C33)+(C53-C43)+…+(C1013-C1003)=C1013
故选C.
点评:本题主要考查组合数公式的性质应用,利用了组合数公式的性质Cn+13-cn3=Cn2,即Cn2 +cn3 =Cn+13,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文科) 计算
lim
n→∞
C22+C32+C42+…+Cn2
n3
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

C22+C32+C42+…+C1002的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)求证:
C
m
n
=
n
m
C
m-1
n-1

(Ⅱ)利用第(Ⅰ)问的结果证明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其实我们常借用构造等式,对同一个量算两次的方法来证明组合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
(1+x)[1-(1+x)n]
1-(1+x)
=
(1+x)n+1-(1+x)
x
;,由左边可求得x2的系数为C22+C32+C42+…+Cn2,利用右式可得x2的系数为Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.请利用此方法证明:(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

C22+C32+C42+…+C1002的值为(  )
A.2C1013B.2C1003C.C1013D.A1003

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省无锡一中高二(下)期末数学试卷(理科)(解析版) 题型:解答题

(Ⅰ)求证:
(Ⅱ)利用第(Ⅰ)问的结果证明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其实我们常借用构造等式,对同一个量算两次的方法来证明组合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=;,由左边可求得x2的系数为C22+C32+C42+…+Cn2,利用右式可得x2的系数为Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.请利用此方法证明:(C2n2-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

同步练习册答案