精英家教网 > 高中数学 > 题目详情
已知p:函数f(x)=|x+a|在(-∞,-1)上是单调函数;q:函数g(x)=loga(x+1)(a>0且a≠1)在(-1,+∞)上是增函数,则¬p成立是q成立的(  )
A、充分不必要
B、必要不充分
C、充要条件
D、既不充分也不必要
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:分别求出p,q成立时的a的范围,从而得到?p成立时a>1是q的充要条件.
解答: 解:由p成立,则a≤1,由q成立,则a>1,
所以?p成立时a>1是q的充要条件.
故选C.
点评:本题借助不等式来考查命题逻辑,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数中,在其定义域内,既是奇函数又是减函数的是(  )
A、f(x)=
-x
B、f(x)=-x3
C、f(x)=-tan x
D、f(x)=
1
x

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AD,AE,BC分别与圆切D,E,F于点,延长AF与圆O交于另一点G,给出下列三个结论:
①AD+AE=AB+BC+CA
②△AFB~△ADG
③AF•AG=AD•AE
其中正确结论的序号是(  )
A、①②B、②③C、①③D、①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对应的便分别是a,b,c,A,B为锐角且B<A,sinA=
5
5
,sin2B=
3
5

(1)求角C的值
(2)若b+c=
5
+1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:关于x的不等式x2+2ax-a>0的解集是R,q:-1≤a≤0,则p是q的(  )
A、充分非必要条件
B、必要非充分条件
C、充要条件
D、既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知tan(π+α)=-2,求
sinα+cosα
sinα-cosα
的值;
(2)化简
sin(3π+α)cos(2π-α)cos(
π
2
+α)tan(-α)
sin(α-π)cos(α-
π
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
2
5
5
,α∈(
π
2
,π)
(1)求tanα及tan2α;
(2)求
2cos(
π
2
+α)+cos(π-α)
sin(
π
2
-α)+3sin(π+α)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是集合{2s+2t|0≤s<t,且s、t∈Z}中所有的数从小到大排列成的数列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12,…,将数列{an}中的各项按照上小下大、左小右大的原则写成如图所示的三角形数阵,则a99=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在正八边形的8个顶点中,任取4个点,则以这4个点为顶点的四边形是梯形的概率为(  )
A、
8
35
B、
12
35
C、
2
7
D、
16
35

查看答案和解析>>

同步练习册答案