(本小题满分12分)
有三种产品,合格率分别为0.90,0.95和0.95,各抽取一件进行检验.
(1)求恰有一件不合格的概率;
(2)求至少有两件不合格的概率.(精确到0.001)
解:设三种产品各抽取一件,抽到合格产品的事件分别为A,B和C。
(1)P(A)=0.90,P(B)=0.95, P()=0.10,P()=0.05.
因为事件A,B,C相互独立,恰有一件不合格的概率为
P(AB)+P(AC) +P(BC)
=P(A)·P(B) ·P()+P(A)·P()·P(C) +P()·P(B) ·P(C)
=2×0.90×0.95×0.05+0.10×0.95××0.95≈0.176
即恰有一件不合格的概率为0.176.…………………………………………6分
(2)解法一:至少有两件不合格的概率为
P(A)+P(B) +P(C) +P()
=0.90×0.052+2×0.10×0.05×0.95+0.10×0.052=0.012,
即至少有两件不合格的概率为0.012.…………………………………………12分
解法二 三件产品都合格的概率为
P(ABC) =P(A)·P(B)·P(C) =0.90×0.952≈0.812.
由(1)知,恰有一件不合格的概率为0.176,所以至少有两件不合格的概率为
1- [P(ABC) +0.176] =1-(0.812+0.176)=0.012.……………………12分
【解析】略
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com