精英家教网 > 高中数学 > 题目详情

第(1)小题满分6分,第(2)小题满分8分.

如图:在正方体中,的中点,是线段上一点,且.

(1)   求证:

(2)   若平面平面,求的值.[

 

【答案】

(1)见解析;(2).

【解析】本试题主要考查了立体几何中的线面垂直和面面垂直的运用。

解:(1)不妨设正方体的棱长为1,如图建立空间直角坐标系,

-------------------2分

于是:-------------------4分

因为,所以------------5分

故:-------------------6分

(2)由(1)可知的法向量取 -----------------8分

,则-------------------10分

又设平面CDE的法向量为

 --------12分

因为,所以-------------------14分

 

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年上海市浦东新区高三4月高考预测(二模)理科数学试卷(解析版) 题型:解答题

本题共有2个小题,第(1)小题满分6分,第(2)小题满分6分.

如图,已知正四棱柱的底面边长是,体积是分别是棱的中点.

(1)求直线与平面所成的角(结果用反三角函数表示);

(2)求过的平面与该正四棱柱所截得的多面体的体积.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市徐汇区高三4月学习能力诊断理科数学试卷(解析版) 题型:解答题

第(1)小题满分6分,第(2)小题满分8分.

由于浓酸泄漏对河流形成了污染,现决定向河中投入固体碱。1个单位的固体碱在水中逐步溶化,水中的碱浓度与时间的关系,可近似地表示为。只有当河流中碱的浓度不低于1时,才能对污染产生有效的抑制作用。

(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?

(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是各次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

上海市徐汇区2011届高三下学期学习能力诊断卷(数学理).doc
 

(本题满分18分)第(1)小题满分6分,第(2)小题满分6分,第(3)小题满分6分。

设等比数列的首项为,公比为为正整数),且满足是与的等差中项;数列满足。

求数列的通项公式;

试确定实数的值,使得数列为等差数列;

当数列为等差数列时,对每个正整数,在和之间插入个2,得到一个新数列。设是数列的前项和,试求满足的所有正整数。

查看答案和解析>>

科目:高中数学 来源: 题型:

上海市徐汇区2011届高三下学期学习能力诊断卷(数学理).doc
 

(本题满分14分)第(1)小题满分6分,第(2)小题满分8分。

如图1,,是某地一个湖泊的两条互相垂直的湖堤,线段和曲线段分别是湖泊中的一座栈桥和一条防波堤。为观光旅游的需要,拟过栈桥上某点分别修建与,平行的栈桥、,且以、为边建一个跨越水面的三角形观光平台。建立如图2所示的直角坐标系,测得线段的方程是,曲线段的方程是,设点的坐标为,记。(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度)

(1)求的取值范围;

(2)试写出三角形观光平台面积关于的函数解析式,并求出该面积的最小值。

查看答案和解析>>

同步练习册答案