【题目】甲、乙两人各射击一次,击中目标的概率分别是
和
.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响.
(1)求甲射击4次,至少1次未击中目标的概率;
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率.
科目:高中数学 来源: 题型:
【题目】某学校为调查该校学生每周使用手机上网的时间,随机收集了若干位学生每周使用手机上网的时间的样本数据(单位:小时),将样本数据分组为
,绘制了如下图所示的频率分布直方图,已知
内的学生有5人.
![]()
(1)求样本容量
,并估计该校学生每周平均使用手机上网的时间;
(2)将使用手机上网的时间在
内定义为“长时间看手机”;使用手机上网的时间在
内定义为“不长时间看手机”.已知在样本中有
位学生不近视,其中“不长时间看手机”的有
位学生.请将下面的
列联表补充完整,并判断能否在犯错误的概率不超过
的前提下认为该校学生长时间看手机与近视有关.
近视 | 不近视 | 合计 | |
长时间看手机 | |||
不长时间看手机 | 15 | ||
合计 | 25 |
参考公式和数据:
.
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
上的任意一点到两定点
、
距离之和为
,直线
交曲线
于
两点,
为坐标原点.
(1)求曲线
的方程;
(2)若
不过点
且不平行于坐标轴,记线段
的中点为
,求证:直线
的斜率与
的斜率的乘积为定值;
(3)若直线
过点
,求
面积的最大值,以及取最大值时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
=1(a>b>0),e=
,其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A、B,点A,B的中点横坐标为
,且
=λ
(其中λ>1).
(1)求椭圆C的标准方程;
(2)求实数λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣1|+|x+a|, ![]()
(1)当a=﹣2时,求不等式f(x)<g(x)的解集;
(2)若a>﹣1,且当x∈[﹣a,1]时,不等式f(x)≤g(x)有解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.![]()
(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的定义域为
,部分对应值如下表,又知
的导函数
的图象如下图所示:
| -1 | 0 | 4 | 5 |
| 1 | 2 | 2 | 1 |
则下列关于
的命题:
①
为函数
的一个极大值点;
②函数
的极小值点为2;
③函数
在
上是减函数;
④如果当
时,
的最大值是2,那么
的最大值为4;
⑤当
时,函数
有4个零点.
其中正确命题的序号是__________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0,函数
.
(1)记f(x)在区间[0,4]上的最大值为g(a),求g(a)的表达式;
(2)是否存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求出a的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com