精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=kx2+(3+k)x+3,其中k为常数,且k≠0.
(1)若f(2)=3,求函数f(x)的表达式;
(2)在(1)的条件下,设函数g(x)=f(x)﹣mx,若g(x)在区间[﹣2,2]上是单调函数,求实数m的取值范围;
(3)是否存在k使得函数f(x)在[﹣1,4]上的最大值是4?若存在,求出k的值;若不存在,请说明理由.

【答案】
(1)解:由f(2)=3,可得4k+2(3+k)+3=3,∴k=﹣1

∴f(x)=﹣x2+2x+3


(2)解:由(1)得g(x)=f(x)﹣mx=﹣x2+(2﹣m)x+3,函数的对称轴为x=

∵g(x)在区间[﹣2,2]上是单调函数,

∴m≤﹣2或m≥6


(3)解:f(x)=kx2+(3+k)x+3的对称轴为

①k>0时,函数图象开口向上, ,此时函数f(x)在[﹣1,4]上的最大值是f(4)=16k+(3+k)×4+3=20k+15=4,∴ ,不合题意,舍去;

②k<0时,函数图象开口向下,

1°若 ,即 时,函数f(x)在[﹣1,4]上的最大值是f( )=

∴k2+10k+9=0,∴k=﹣1或k=﹣9,符合题意;

2°若 ,即 时,函数f(x)在[﹣1,4]上递增,最大值为f(4)=16k+(3+k)×4+3=20k+15=4,

,不合题意,舍去;

综上,存在k使得函数f(x)在[﹣1,4]上的最大值是4,且k=﹣1或k=﹣9


【解析】(1)由f(2)=3,可得k的值,从而可得函数f(x)的表达式;(2)g(x)=f(x)﹣mx=﹣x2+(2﹣m)x+3,函数的对称轴为x= ,根据g(x)在区间[﹣2,2]上是单调函数,可得 ,从而可求实数m的取值范围;(3)f(x)=kx2+(3+k)x+3的对称轴为 ,分类讨论,确定函数图象开口向上,函数f(x)在[﹣1,4]上的单调性,利用最大值是4,建立方程,即可求得结论.
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心, OA为半径作圆.

(1)证明:直线AB与⊙O相切;
(2)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域,值域分别为A,B,且A∩B是单元集,下列命题中:
①若A∩B={a},则f(a)=a;
②若B不是单元集,则满足f[f(x)]=f(x)的x值可能不存在;
③若f(x)具有奇偶性,则f(x)可能为偶函数;
④若f(x)不是常数函数,则f(x)不可能为周期函数.
正确命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= ,则该函数在(﹣∞,+∞)上是(
A.单调递减无最小值
B.单调递减有最小值
C.单调递增无最大值
D.单调递增有最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分层抽样是将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法;在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带钱多少的比例进行交税,问三人各应付多少税?则下列说法错误的是( )

A. 甲应付 B. 乙应付

C. 丙应付 D. 三者中甲付的钱最多,丙付的钱最少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(n)=1+ ,g(n)= ,n∈N*
(1)当n=1,2,3时,试比较f(n)与g(n)的大小关系;
(2)猜想f(n)与g(n)的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某企业近3年的前7个月的月利润(单位:百万元)如下面的折线图所示:

1)试问这3年的前7个月中哪个月的月平均利润最高?

2)通过计算判断这3年的前7个月的总利润的发展趋势;

3)试以第3年的前4个月的数据(如下表),用线性回归的拟合模式估测第38月份的利润.

月份x

1

2

3

4

利润y(单位:百万元)

4

4

6

6

相关公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为 与p,且乙投球2次均未命中的概率为
(1)求乙投球的命中率p;
(2)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班人进行了问卷调查得到了如下的列联表:已知在全部人中随机抽取人,抽到喜爱打篮球的学生的概率为

(1)请将上面的列联表补充完整(不用写计算过程);并求出:有多大把握认为喜爱打篮球与性别有关,说明你的理由;

(2)若从该班不喜爱打篮球的男生中随机抽取3人调查,求其中某男生甲被选到的概率。下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5. 024

6.635

7.879

10.828

(参考公式: ,其中)

查看答案和解析>>

同步练习册答案