精英家教网 > 高中数学 > 题目详情

【题目】如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心, OA为半径作圆.

(1)证明:直线AB与⊙O相切;
(2)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.

【答案】
(1)证明:设K为AB中点,连结OK,

∵OA=OB,∠AOB=120°,

∴OK⊥AB,∠A=30°,OK=OAsin30°= OA,

∴直线AB与⊙O相切;


(2)解:因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.

∵OA=OB,TA=TB,

∴OT为AB的中垂线,

同理,OC=OD,TC=TD,

∴OT为CD的中垂线,

∴AB∥CD


【解析】(1)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°= OA,则AB是圆O的切线.(2)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在定义域(0,+∞)上是单调函数,若对任意x∈(0,+∞),都有 ,则 的值是(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在轴上,离心率等于,它的一个顶点恰好是抛物线的焦点。

(1)求椭圆C的标准方程。

(2)已知点在椭圆C上,点A、B是椭圆C上不同于P、Q的两个动点,且满足: 。试问:直线AB的斜率是否为定值?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= x2﹣mlnx,g(x)=x2﹣(m+1)x,m>0.
(1)求函数f(x)的单调区间;
(2)当m≥1时,讨论函数f(x)与g(x)图象的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若在区间有最大值,求整数的所有可能取值;

(2)求证:当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数,又在区间(0,+∞) 上单调递减的函数是(
A.y=x2
B.y=x1
C.y=x2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣ x3+bx2+cx+bc.
(1)若函数f(x)在x=1处有极值﹣ ,试确定b、c的值;
(2)若b=1,f(x)存在单调递增区间,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的参数方程是 (φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ2.正方形ABCD的顶点都在C2上,且ABCD依逆时针次序排列,点A的极坐标为.

(1)求点ABCD的直角坐标;

(2)PC1上任意一点,求|PA|2|PB|2|PC|2|PD|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=kx2+(3+k)x+3,其中k为常数,且k≠0.
(1)若f(2)=3,求函数f(x)的表达式;
(2)在(1)的条件下,设函数g(x)=f(x)﹣mx,若g(x)在区间[﹣2,2]上是单调函数,求实数m的取值范围;
(3)是否存在k使得函数f(x)在[﹣1,4]上的最大值是4?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案