【题目】如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心, OA为半径作圆.
(1)证明:直线AB与⊙O相切;
(2)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.
【答案】
(1)证明:设K为AB中点,连结OK,
∵OA=OB,∠AOB=120°,
∴OK⊥AB,∠A=30°,OK=OAsin30°= OA,
∴直线AB与⊙O相切;
(2)解:因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.
∵OA=OB,TA=TB,
∴OT为AB的中垂线,
同理,OC=OD,TC=TD,
∴OT为CD的中垂线,
∴AB∥CD
【解析】(1)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°= OA,则AB是圆O的切线.(2)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在原点,焦点在轴上,离心率等于,它的一个顶点恰好是抛物线的焦点。
(1)求椭圆C的标准方程。
(2)已知点在椭圆C上,点A、B是椭圆C上不同于P、Q的两个动点,且满足: 。试问:直线AB的斜率是否为定值?请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= x2﹣mlnx,g(x)=x2﹣(m+1)x,m>0.
(1)求函数f(x)的单调区间;
(2)当m≥1时,讨论函数f(x)与g(x)图象的交点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=﹣ x3+bx2+cx+bc.
(1)若函数f(x)在x=1处有极值﹣ ,试确定b、c的值;
(2)若b=1,f(x)存在单调递增区间,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1的参数方程是 (φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为.
(1)求点A,B,C,D的直角坐标;
(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=kx2+(3+k)x+3,其中k为常数,且k≠0.
(1)若f(2)=3,求函数f(x)的表达式;
(2)在(1)的条件下,设函数g(x)=f(x)﹣mx,若g(x)在区间[﹣2,2]上是单调函数,求实数m的取值范围;
(3)是否存在k使得函数f(x)在[﹣1,4]上的最大值是4?若存在,求出k的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com