精英家教网 > 高中数学 > 题目详情

【题目】下列函数中,既是偶函数,又在区间(0,+∞) 上单调递减的函数是(
A.y=x2
B.y=x1
C.y=x2
D.

【答案】A
【解析】解答:函数y=x2 , 既是偶函数,在区间(0,+∞) 上单调递减,故A正确;函数y=x1 , 是奇函数,在区间(0,+∞) 上单调递减,故B错误;
函数y=x2 , 是偶函数,但在区间(0,+∞) 上单调递增,故C错误;
函数 ,是奇函数,在区间(0,+∞) 上单调递增,故D错误;
故选A
分析:根据幂函数奇偶性与单调性与指数部分的关系,我们逐一分析四个答案中幂函数的性质,即可得到答案.
【考点精析】认真审题,首先需要了解函数的奇偶性(偶函数的图象关于y轴对称;奇函数的图象关于原点对称).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

如图,已知四棱锥的底面为菱形,且 .

I)求证:平面 平面

II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,关于的不等式只有两个整数解,则实数的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的值域为,若,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心, OA为半径作圆.

(1)证明:直线AB与⊙O相切;
(2)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD﹣A1B1C1D1棱长为1,P、Q分别是线段AD1和BD上的点,且D1P:PA=DQ:QB=5:12,

(1)求线段PQ的长度;
(2)求证PQ⊥AD;
(3)求证:PQ∥平面CDD1C1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M是满足下列条件的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=Tf(x)成立.给出如下函数:①f(x)=x;②f(x)=2x;③f(x)= ;④f(x)=x2;则属于集合M的函数个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为F1有一小球A 从F1处以速度v开始沿直线运动,经椭圆壁反射(无论经过几次反射速度大小始终保持不变,小球半径忽略不计),若小球第一次回到F1时,它所用的最长时间是最短时间的5倍,则椭圆的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(n)=1+ ,g(n)= ,n∈N*
(1)当n=1,2,3时,试比较f(n)与g(n)的大小关系;
(2)猜想f(n)与g(n)的大小关系,并给出证明.

查看答案和解析>>

同步练习册答案