精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)

如图,已知四棱锥的底面为菱形,且 .

I)求证:平面 平面

II)求二面角的余弦值.

【答案】I)证明:见解析

II)二面角的余弦值为

【解析】本试题主要考查了面面垂直和二面角的求解的综合运用。

1)根据已知条件找到线面垂直,然后利用面面垂直的判定定理得到其证明。

2)合理的建立空间直角坐标系,然后表示出点的坐标和向量的坐标,借助于平面的法向量,得到向量的夹角,从而得到二面角的平面角的大小。

I)证明:取的中点,连接

为等腰直角三角形

……………………………………2

是等边三角形

,又

…………………………4

,又

平面 平面;……………………………………6

II)以中点 为坐标原点,以所在直线为,所在直线为轴,建立空间直角坐标系如图所示,

……………………8

设平面的法向量

,即,解得

设平面的法向量

,即,解得

…………………………………………………………10

所以二面角的余弦值为…………………………12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+alnx. (Ⅰ)当a=﹣2时,求函数f(x)的单调区间和极值;
(Ⅱ)若g(x)=f(x)+ 在[1,+∞)上是单调增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C的对边分别为a,b,c.已知 =
(1)求角A的大小;
(2)当a=6时,求△ABC面积的最大值,并指出面积最大时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中秋节即将到来,为了做好中秋节商场促销活动,某商场打算将进行促销活动的礼品盒重新设计.方案如下:将一块边长为10的正方形纸片剪去四个全等的等腰三角形 再将剩下的阴影部分折成一个四棱锥形状的包装盒,其中重合于点 重合, 重合, 重合, 重合(如图所示).

(1)求证:平面平面

(2)已知,过于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在定义域(0,+∞)上是单调函数,若对任意x∈(0,+∞),都有 ,则 的值是(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断并证明函数f(x)的奇偶性
(2)判断并证明当x∈(﹣1,1)时函数f(x)的单调性;
(3)在(2)成立的条件下,解不等式f(2x﹣1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探,由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见如表:

(参考公式和计算结果:

(1)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为,求的值,并估计的预报值.

(2)现准备勘探新井,若通过1,3,5,7号并计算出的 的值( 精确到0.01)相比于(1)中的 ,值之差不超过10%,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?

(3)设出油量与勘探深度的比值不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】100名学生报名参加A、B两个课外活动小组,报名参加A组的人数是全体学生人数的 ,报名参加B组的人数比报名参加A组的人数多3,两组都没报名的人数是同时报名参加A、B两组人数的 多1,求同时报名参加A、B两组人数(
A.36
B.13
C.24
D.27

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数,又在区间(0,+∞) 上单调递减的函数是(
A.y=x2
B.y=x1
C.y=x2
D.

查看答案和解析>>

同步练习册答案