精英家教网 > 高中数学 > 题目详情

【题目】中秋节即将到来,为了做好中秋节商场促销活动,某商场打算将进行促销活动的礼品盒重新设计.方案如下:将一块边长为10的正方形纸片剪去四个全等的等腰三角形 再将剩下的阴影部分折成一个四棱锥形状的包装盒,其中重合于点 重合, 重合, 重合, 重合(如图所示).

(1)求证:平面平面

(2)已知,过于点,求的值.

【答案】(1)证明见解析;(2).

【解析】试题分析:(1)拼接成底面的四个角必为全等的等腰直角三角形,从而由此能证明进而得平面平面

(2)RtSHO中,SO=5,

RtEMO中,

试题解析:(1)∵折后ABCD重合于一点O

∴拼接成底面EFGH的四个直角三角形必为全等的等腰直角三角形,

∴底面EFGH是正方形,故EGFH

∵在原平面图形中,等腰三角形△SEE′≌△SGG′,

SE=SG,∴EGSO

又∵EG平面SEC,∴平面SEG⊥平面SFH

(2)解:依题意,当时,即

Rt△SHO中,SO=5,

Rt△EMO中,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为常数,是自然对数的底数),曲线在点处的切线与轴平行.

(1)求的值;

(2)求的单调区间;

(3)设,其中的导函数.证明:对任意.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= g(x)= ,则函数f[g(x)]的所有零点之和是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=kx,g(x)=
(1)求函数g(x)= 的单调区间;
(2)若不等式f(x)≥g(x)在区间(0,+∞)上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数,
(1)求实数a的值;
(2)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k的取值范围;
(3)设关于x的方程f(4x﹣b)+f(﹣2x+1)=0有实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,抛物线的焦点均在轴上, 的中心和的顶点均为原点,从每条曲线上各取两个点,其坐标分别是

(1)求 的标准方程;

(2)是否存在直线满足条件:①过的焦点;②与交于不同的两点且满足?若存在,求出直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

如图,已知四棱锥的底面为菱形,且 .

I)求证:平面 平面

II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x>1},集合B={x|m≤x≤m+3};
(1)当m=﹣1时,求A∩B,A∪B;
(2)若BA,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的值域为,若,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案