精英家教网 > 高中数学 > 题目详情
(2012•重庆)设平面点集A={(x,y)|(y-x)(y-
1
x
)≥0},B={(x,y)|(x-1)2+(y-1)2≤1}
,则A∩B所表示的平面图形的面积为(  )
分析:先分别画出集合A与集合B表示的平面区域,再画出它们的公共部分,最后利用圆的面积公式及图形的对称性,计算所求面积即可
解答:解:∵(y-x)(y-
1
x
)≥0
?
y-x≥0
y-
1
x
≥0
y-x≤0
y-
1
x
≤0
其表示的平面区域如图,(x-1)2+(y-1)2≤1表示以(1,1)为圆心,1为半径的圆及其内部区域,其面积为π
∴A∩B所表示的平面图形为上述两区域的公共部分,如图阴影区域,
由于圆和y=
1
x
均关于y=x对称,
故阴影部分面积为圆的面积的一半,即
π
2

故选 D
点评:本题主要考查了二元不等式表示平面区域的知识和延伸,准确的画出两集合表示的平面区域是解决本题的关键,属基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•重庆)设f(x)=alnx+
1
2x
+
3
2
x+1
,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.
(Ⅰ) 求a的值;
(Ⅱ) 求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•重庆)设函数f(x)=Asin(ωx+φ)其中A>0,ω>0,-π<φ≤π)在x=
π
6
处取得最大值2,其图象与x轴的相邻两个交点的距离为
π
2

(Ⅰ)求f(x)的解析式;
(Ⅱ)求函数g(x)=
6cos4x-sin2x-1
f(x+
π
6
)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•重庆)设f(x)=4cos(ωx-
π
6
)sinωx-cos(2ωx+π),其中ω>0.
(Ⅰ)求函数y=f(x)的值域
(Ⅱ)若f(x)在区间[-
2
π
2
]
上为增函数,求ω的最大值.

查看答案和解析>>

同步练习册答案