【题目】已知动圆
和定圆
外切,和定直线
相切.
(1)求该动圆圆心
的轨迹
的方程;
(2)过点
的直线
与
交于
两点,在曲线
上存在一点
,使得
为定值,求出点
的坐标.
【答案】(1)
,(2)存在,点
.
【解析】
(1)由已知可得:点G的轨迹是到定点C(2,0)的距离和到直线L:x=-2的距离相等的点的集合.由抛物线的定义可知:点P的轨迹是抛物线.求出即可.
(2)设出直线
的方程为:
,联立两方程得
,设设
,得出韦达定理
,设
,表示出
,由恒成立的思想可得出定点坐标.
(1)由圆
可得:圆心
,半径
.
设所求动圆圆心为
,过点
作
垂直于直线:
,
为垂足.
则
,可得
.
因此可得:点
的轨迹是到定点
的距离和到直线
的距离相等的点的集合,
由抛物线的定义可知:点
的轨迹是抛物线,定点
为焦点,定直线
是准线.∴抛物线的方程为:
.
∴该动圆圆心
的轨迹
的方程是
.
(2) 存在定点
的坐标为
,理由如下,
设直线
的方程为:
,由
得,
,整理得
,
设
,则
,
设
,则
,
,
∴![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
∴当
时,
为定值
,此时点
,
所以在曲线
上存在一点
,使得
为定值,此时点
的坐标为
.
科目:高中数学 来源: 题型:
【题目】(2016高考新课标II,理15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一研学实践活动小组利用课余时间,对某公司1月份至5月份销售某种产品的销售量及销售单价进行了调查,月销售单价
(单位:元)和月销售量
(单位:百件)之间的一组数据如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 |
月销售单价 | 1.6 | 1.8 | 2 | 2.2 | 2.4 |
月销售量 | 10 | 8 | 7 | 6 | 4 |
(1)根据1至5月份的数据,求出
关于
的回归直线方程;
(2)预计在今后的销售中,月销售量与月销售单价仍然服从(1)中的关系,若该种产品的成本是1元/件,那么该产品的月销售单价应定为多少元才能获得最大月利润?(注:利润=销售收入-成本)
(回归直线方程
,其中
.参考数据:
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按照干支顺序相配,构成了“干支纪年法”,其相配顺序为:甲子、乙丑、丙寅
癸酉、甲戌、乙亥、丙子
癸未、甲申、乙酉、丙戌
癸巳
癸亥,60为一个周期,周而复始,循环记录.按照“干支纪年法”,中华人民共和国成立的那年为己丑年,则2013年为( )
A.甲巳年B.壬辰年C.癸巳年D.辛卯年
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有
六名百米运动员参加比赛,甲、乙、丙、丁四名同学猜测谁跑了第一名.甲猜不是
就是
;乙猜不是
;丙猜不是
中任一个;丁猜是
中之一,若四名同学中只有一名同学猜对,则猜对的是( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定椭圆C:
(
),称圆心在原点O,半径为
的圆是椭圆C的“卫星圆”.若椭圆C的离心率
,点
在C上.
(1)求椭圆C的方程和其“卫星圆”方程;
(2)点P是椭圆C的“卫星圆”上的一个动点,过点P作直线
,
使得![]()
![]()
,与椭圆C都只有一个交点,且
,
分别交其“卫星圆”于点M,N,证明:弦长
为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com