精英家教网 > 高中数学 > 题目详情

(本题14分)如图,一水渠的横断面是抛物线形,O是抛物线的顶点,口宽EF=4米,高3米,建立适当的直角坐标系,(1)求抛物线方程.(2)若将水渠横断面改造成等腰梯形ABCD,要求高度不变,只挖土,不填土,求梯形ABCD的下底AB多大时,所挖的土最少?

 

【答案】

(1);(2)梯形ABCD的下底AB=米时,所挖的土最少.

【解析】

试题分析:(1)解:如图 以O为原点,AB所在的直线为X轴,建立平面直角坐标系,

则F(2,3),设抛物线的方程是

因为点F在抛物线上,所以

所以抛物线的方程是

 ……………………4分

(2) 解:等腰梯形ABCD中,AB∥CD,线段AB的中点O是抛物线的顶点,AD,AB,BC分别与抛物线切于点M,O,N

,设,则抛物线在N处的切线方程是……………………8分

,所以,……………………10分

梯形ABCD的面积是

…………………12分

答:梯形ABCD的下底AB=米时,所挖的土最少. ……………………14分

考点:本题主要考查抛物线在实际问题中的应用,导数的几何意义,均值定理的应用,直线与抛物线的位置关系。

点评:综合题,通过建立适当的直角坐标系,求得抛物线方程,从而通过研究直线与抛物线的位置关系,求切线方程,确定得到截面面积表达式,运用均值定理求得最值。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年浙江卷)(本题14分)如图,矩形和梯形所在平面互相垂直,

(Ⅰ)求证:平面

(Ⅱ)当的长为何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题14分)如图,分别是正方体

的中点.

(1)求证://平面

(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题14分)

如图,四棱锥中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E为PD的中点

(1)求异面直线PA与CE所成角的大小;

(2)(理)求二面角E-AC-D的大小。

    (文)求三棱锥A-CDE的体积。

查看答案和解析>>

科目:高中数学 来源:2010届上海市虹口区高三第二次模拟考试数学卷 题型:解答题

(本题14分)

如图,四棱锥中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E为PD的中点

(1)求异面直线PA与CE所成角的大小;

(2)(理)求二面角E-AC-D的大小。

    (文)求三棱锥A-CDE的体积。

 

查看答案和解析>>

同步练习册答案