精英家教网 > 高中数学 > 题目详情
如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC、DC分别截于E,F,如果截面将四面体分成体积相等的两部分,设四棱锥A-BEFD与三棱锥A-EFC的表面积分别是S1,S2,则必有(    )

A.S1<S2                B.S1>S2                 C.S1=S2                   D.S1,S2的大小关系不能确定

C

解析:连OA、OB、OC、OD,

则VA-BEFD=VO-ABD+VO-ABE+VO-BEFD,VA-EFC=VO-ADC+VO-AEC+VO-EFC,又VA-BEFD=VA-EFC而每个三棱锥的高都是原四面体的内切球的关系,故SABD+SABE+SBEFD=SADC+SAEC+SEFC.又面AEF公共,故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H分别为DE,AF的中点,将△ABC沿DE,EF,DF折成正四面体P-DEF,则四面体中异面直线PG与DH所成的角的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H分别为DE,AF的中点,将△ABC沿DE,EF,DF折成正四面体P-DEF,则四面体中异面直线PG与DH所成的角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体ABCD中,BC⊥面ACD,DA=DC,E、F分别为AB、AC的中点.
(1)求证:直线EF∥面BCD;
(2)求证:面DEF⊥面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•武汉模拟)如图,在四面体A-BCD中,AB=AD=
2
,BD=2,DC=1
,且BD⊥DC,二面角A-BD-C大小为60°.
(1)求证:平面ABC上平面BCD;
(2)求直线CD与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四面体ABCD中,DA=DB=DC=1,且DA,DB,DC两两互相垂直,点O是△ABC的中心,将△DAO绕直线DO旋转一周,则在旋转过程中,直线DA与BC所成角的余弦值的取值范围是(  )
A、[0, 
6
3
]
B、[0, 
3
2
]
C、[0, 
2
2
]
D、[0, 
3
3
]

查看答案和解析>>

同步练习册答案