精英家教网 > 高中数学 > 题目详情
函数f(x)=logax与g(x)=b-x(其中a>0,a≠1,ab=1)的图象可能是(  )
A、
B、
C、
D、
考点:函数的图象
专题:函数的性质及应用
分析:对a分类讨论,利用指数函数与对数函数的单调性即可得出.
解答: 解:当a>1时,则0<b<1,利用指数函数与对数函数的单调性可得:函数f(x)=logax与g(x)=b-x同为增函数,
当0<a<1时,则b>1,利用指数函数与对数函数的单调性可得:函数f(x)=logax与g(x)=b-x同为减函数,
函数f(x)=logax与g(x)=b-x的单调性一致,
故选:C.
点评:本题考查了指数函数与对数函数的单调性,考查了分类讨论的思想方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m为常数,函数f(x)=
m-2x
1+m•2x
为奇函数.
(Ⅰ)求m的值;
(Ⅱ)若m>0,试判断f(x)的单调性(不需证明);
(Ⅲ)当m>0时,若存在x∈[-2,2],使得f(ex+x-k)+f(2)≤0能成立,求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx-
π
3
)(A>0,ω>0)在某一周期内的图象的最高点和最低点的坐标分别为(
12
,2),(
11π
12
,-2).
(1)求A和ω值;
(2)已知α∈(0,
π
2
),且f(
α
2
)=-
2
3
,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数f(x)=cosxsinx的图象向左平移m个单位长度后,所得到的图象关于y轴对称,则正数m的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1-ABCD,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD-A2B2C2D2
(1)现需要对该零部件表面进行防腐处理,已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为2元,需加工处理费多少元?
(2)求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点B(-2,0),C(2,0),动点A满足|AB|,|BC|,|AC|成等差数列,则点A的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A=B=R,x∈A,x∈B,对任意x∈A,x→ax+b是从A到B的函数.若输出值1和8分别对应的输入值为3和10,则输入值5对应的输出值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,三个内角A,B,C满足:sin2(B+C)=cos(A-B),则角A与角B的大小关系是(  )
A、A+B=
3
B、A<B
C、A=B
D、A>B

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足f(-x)=-f(x),f(x)=f(x+4),且x∈(-1,0)时,f(x)=2x+
1
5
,则f(log220)=(  )
A、1
B、
4
5
C、-1
D、-
4
5

查看答案和解析>>

同步练习册答案