精英家教网 > 高中数学 > 题目详情

如图,A、B是海面上位于东西方向相距5(3+)海里的两个观测点,现位于A点北偏东45°、B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船达到D点需要多长时间?

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最小正周期;
(2)在中,若的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设△ABC的内角A,B,C所对的边分别为a,b,c,且a+c=6,b=2,cosB=.
(1)求a,c的值;
(2)求sin(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A、B、C对应的边分别是a、b、c.已知cos2A-3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,A、B、C所对的边分别是a、b、c,且bcosB是acosC、ccosA的等差中项.
(1)求B的大小;
(2)若a+c=,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos2A-3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

△ABC为一个等腰三角形形状的空地,腰AC的长为3(百米),底AB的长为4(百米).现决定在空地内筑一条笔直的小路EF(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等,面积分别为S1和S2.
(1)若小路一端E为AC的中点,求此时小路的长度;
(2)若小路的端点E、F两点分别在两腰上,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,已知
(1)求的大小;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.

查看答案和解析>>

同步练习册答案