精英家教网 > 高中数学 > 题目详情
已知f(x)=2x-1,g(x)=
1
1+x2

(1)求f(x+1),g(
1
x
),f(g(x));
(2)写出函数f(x)与g(x)定义域和值域.
考点:函数解析式的求解及常用方法,函数的定义域及其求法,函数的值域
专题:计算题,函数的性质及应用
分析:(1)分别代入化简即可;
(2)直接写出定义域与值域.
解答: 解:(1)f(x+1)=2(x+1)-1=2x+1;
g(
1
x
)=
1
1+
1
x2
=
x2
1+x2

f(g(x))=f(
1
1+x2
)=2
1
1+x2
-1;
(2)函数f(x)的定义域为R,值域R;
g(x)的定义域为R,值域为(0,1].
点评:本题考查了函数的定义域与值域的求法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(ex)=ex,g(x)=
1
e
f(x)-(x+1)(e=2.718…)
(1)求函数g(x)的极大值;
(2)令F(x)=
x2
2
-f(x),求函数y=F(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
1+cosθ-sinθ
1-cosθ-sinθ
+
1-cosθ-sinθ
1+cosθ-sinθ

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:mx-m2y-1=0经过点P(2,1),则倾斜角与直线l的倾斜角互为补角的一条直线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为
100
n=1
n
,这里“∑”是求和符号,通过对以上材料的阅读,计算
20
n=1
1
n(n+1)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={0,1,2},集合B={x,y|x∈A,y∈A,x+y∈A},则B的元素个数为(  )
A、5B、6C、7D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某几何体的正视图是边长为2的正方形,左视图和俯视图都是直角边长为2的等腰直角三角形,则该几何体的体积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
2
3
,左焦点为F,A,B,C为其三个顶点,直线CF与AB交于点D,则tan∠BDC的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=-aln(-x)-(a+1)x.
(1)求f(x)在R上的解析式;
(2)当a>-1时,讨论f(x)在(0,+∞)上的单调性,并指出其单调区间;
(3)若对于任意的x∈(0,+∞),f(x)≥-
1
2
x2
恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案