精英家教网 > 高中数学 > 题目详情
如图,某几何体的正视图是边长为2的正方形,左视图和俯视图都是直角边长为2的等腰直角三角形,则该几何体的体积等于
 
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:几何体是一个四棱锥,四棱锥的底面是一个边长为2的正方形,四棱锥的一条侧棱与底面垂直,长度是2,做出四棱锥的体积.
解答: 解:由三视图知几何体是一个四棱锥,
四棱锥的底面是一个边长为2的正方形,
∴底面面积是2×2=4
四棱锥的一条侧棱与底面垂直,长度是2
∴四棱锥的体积是
1
3
×4×2
=
8
3

故答案为:
8
3
点评:本题考查由三视图还原几何体并且求几何体的体积,本题解题的关键是看出这是一个底面垂直于底面的四棱锥.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

解方程组:
a+b=9
2
c
a
=
3
5
a2=b2+c2

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F作一直线交椭圆于P、Q两点,若线段PF与QF的长分别p、q,则
1
p
+
1
q
是否为定值?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x-1,g(x)=
1
1+x2

(1)求f(x+1),g(
1
x
),f(g(x));
(2)写出函数f(x)与g(x)定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个平面图形的面积为S,其直观图的面积为S′,则S:S′=(  )
A、2
2
B、
2
C、2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
5
+
y2
9
=1
上一点P到椭圆的一焦点的距离为3,则P到另一焦点的距离是(  )
A、2
5
-3
B、2
C、3
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:y=k(x+2)与椭圆
x2
2
+y2=1相较于A、B两点,O为坐标原点,若以OA、OB为;邻边作平行四边形OAPB.
(1)求P点的轨迹方程;
(2)是否存在直线l,使OAPB为矩形,若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x-1|+|x+3|≥a恒成立,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

程序框图(如图)的运算结果为
 

查看答案和解析>>

同步练习册答案