精英家教网 > 高中数学 > 题目详情
已知函数h(x)=f(x)+x-1是奇函数且f(2)=3,若g(x)=f(x)-1,则g(-2)=
 
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:利用奇函数的性质即可得出.
解答: 解:∵函数h(x)=f(x)+x-1是奇函数,
∴f(2)+2-1+f(-2)-3-1=0,
化为f(2)+f(-2)=3.
∵f(2)=3,∴f(-2)=0.
∵g(x)=f(x)-1,
∴g(-2)=f(-2)-1=-1.
故答案为:-1.
点评:本题考查了奇函数的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

89×90×91×92×…×100可表示为(  )
A、A
 
10
100
B、
A
11
100
C、
A
12
100
D、
A
13
100

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC中,点A(-1,0),B(1,0).圆I是△ABC的内切圆,且CI延长线交AB与点D,若
CI
=2
ID

(1)求点C的轨迹Ω的方程
(2)若椭圆
x2
a2
+
y2
b2
=1(a>b>0)上点(x0,y0)处的切线方程是
x0x
a2
+
y0y
b2
=1
①过直线l:x=4上一点M引Ω的两条切线,切点分别是P、Q,求证直线PQ恒过定点N;
②是否存在实数λ,使得|PN|+|QN|=λ|PN|•|QN|?若存在,求出λ的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列判断中所有正确命题的序号是
 

①当a=4,b=5,A=30°时,三角形有两解;
②当a=5,b=4,A=60°时,三角形有两解;
③当a=
3
,b=
2
,B=120°时,三角形有一解;
④当a=
3
2
2
,b=
6
,A=60°时,三角形有一解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是正数组成的数列,a1=1,且点(
an
,an+1)(n∈N*)在函数y=2x2的图象上.
(1)若数列{bn}满足b1=1,bn+1=bn+an,求数列{bn}的通项公式;
(2)在(1)的条件下,cn=n•log2bn,求{
1
cn+1
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=cos(
1
2
x-
π
3
)的图象上各点向左平移
π
6
个单位,所得函数图象的一条对称轴是(  )
A、x=
π
9
B、x=
π
8
C、x=π
D、x=
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(λ,-3),
b
=(4,-2),若
a
b
,则实数λ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:不等式x2-2x-m>0解集为R,q:集合A={x|x2+2x-m-1=0,x∈R},且A≠∅.且p∧q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

?x∈[-1,1]使关于x的不等式x2-2m-5>0能成立,则m取值范围是
 

查看答案和解析>>

同步练习册答案