精英家教网 > 高中数学 > 题目详情
在棱长为a的正方体ABCD-A1B1C1D1中,M是AA1的中点,则点A1到平面MBD的距离是(  )
A、
6
3
a
B、
3
6
a
C、
3
4
a
D、
6
6
a
分析:利用等体积法,VA-MBD=VB-AMD.求出MDB的面积,然后求距离即可.
解答:精英家教网解:A到面MBD的距离由等积变形可得.
VA-MBD=VB-AMD.即:
1
12
a3=
1
3
×d×
1
2
×
2
a× 
5
4
a
2
-
2
4
a2
即易求d=
6
6
a.
故选D
点评:本题考查点到平面的距离,等体积法求距离的方法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网
在棱长为a的正方体ABCD-A1B1C1D1中,M,N分别为A1B和CC1的中点.求:

(Ⅰ)直线MN和BC所成角的正切值;
(Ⅱ)直线A1B和平面ABCD所成角的大小;
(Ⅲ)点N到直线AB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

19、在棱长为a的正方体ABCD-A1B1C1D1中,E,F,G,M,N,Q分别是棱A1A,A1B1,A1D1,CB,CC1,CD的中点,求证:平面EFG∥平面MNQ.

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为a的正方体ABCD-A1B1C1D1中,向量
BA1
与向量
AC
所成的角为
120°
120°

查看答案和解析>>

科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:013

在棱长为a的正方体骨架内放置一气球,使其充气且尽可能地膨胀(仍保持球形),则气球表面积的最大值为

[  ]

A.2πa2
B.3πa2
C.4πa2
D.4πa2

查看答案和解析>>

科目:高中数学 来源: 题型:013

如图, 在棱长为a的正方体A'B'C'D'-ABCD中过底面对角线AC作一个与底

[  ]

   

查看答案和解析>>

同步练习册答案