精英家教网 > 高中数学 > 题目详情
如图,已知多面体的底面是边长为的正方形,底面,且
(Ⅰ)求多面体的体积;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面平行,要求保留作图痕迹,但不要求证明.
(Ⅰ)(Ⅰ)
(Ⅱ)设直线与平面所成角为  
(Ⅲ)利用三角形中位线定理,取线段DC的中点,连接即为所求.

试题分析:(Ⅰ)(Ⅰ)连接ED,利用“分割法”计算得
(Ⅱ)以点A为原点,AB所在的直线为轴,AD所在的直线为轴,建立空间直角坐标系.确定得到A(0,0,0),E(0,0,2),B(2,0,0),C(2,2,0),F(0,2,1),及.
利用  确定平面的一个法向量为.
设直线与平面所成角为 
(Ⅲ)取线段DC的中点;连接,则直线即为所求.
试题解析:(Ⅰ)如图,连接ED,
底面,∴底面,
,
,
,                     1分
,         2分
  ,              3分
∴多面体的体积
.              5分
(Ⅱ)以点A为原点,AB所在的直线为轴,AD所在的直线为轴,建立空间直角坐标系,如图.由已知可得A(0,0,0),E(0,0,2),B(2,0,0),C(2,2,0),F(0,2,1),

所以       7分
设平面ECF的法向量为
   得:
取y=1,得平面的一个法向量为         9分
设直线与平面所成角为
所以    11分  
(Ⅲ)取线段CD的中点;连接,直线即为所求.                12分
图上有正确的作图痕迹            13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,的中点.

(1)求证:
(2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在边长为的正方形中,分别为的中点,分别为的中点,现沿折叠,使三点重合,重合后的点记为,构成一个三棱锥.

(1)请判断与平面的位置关系,并给出证明;
(2)证明平面
(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正四棱柱=2,分别在上移动,且始终保持∥平面,设,则函数的图象大致是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条直线,两个平面.下面四个命题中不正确的是(   )
A.
B.
C.,
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于直线和平面,若,则“”是“”的(   )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

三棱锥及其三视图中的主视图和左视图如图9所示,则棱的长为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设l、m是两条不同的直线,a,β是两个不同的平面,有下列命题:
①l//m,ma,则l//a ;② l//a,m//a 则 l//m; ③a丄β,la,则l丄β; ④l丄a,m丄a,则l//m.
其中正确的命题的个数是(      )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是空间三条不同的直线,是空间中不同的平面,则下列命题中不正确的是(   )
A.若,则
B.若,则
C.当内的射影,若,则
D.当时,若,则

查看答案和解析>>

同步练习册答案