精英家教网 > 高中数学 > 题目详情
如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB =1,F为CD的中点。
(1)求证:AF⊥平面CDE;
(2)求平面ACD和平面BCE所成锐二面角的大小;
(3)求三棱锥A-BCE的体积。
解:(1)∵DE⊥平面ACD,AF平面ACD
∴DE⊥AF
又∵AC=AD,F为CD的中点,
∴AF⊥CD
∵CD∩DE=D
∴AF⊥平面CDE。
(2)如图,延长DA、EB交于点H,连接CH,易知AB∥DE,
∴A为HD的中点,
∵F为CD的中点,
∴CH∥AF
∵AF⊥平面CDE,
∴CH⊥平面CDE
∴∠DCE为平面ACD与平面BCE所成锐二面角的平面角,
又△CDE是等腰直角三角形,则∠DCE =45°,
故所求锐二面角的大小为45°。
(3)
又DE∥AB
故点E到平面ABC 的距离h等于点D到平面ABC的距离,即△ADC中的AC边上的高

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知多面体ABCDEF中,AB⊥平面ACDF,DE⊥平面ACDF,△ACD是正三角形,且AD=DE=2,AB=AF=1,DF=
3

(Ⅰ)求证:DF⊥平面CDE;
(Ⅱ)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知多面体ABCDE中,DE⊥平面DBC,DE∥AB,BD=CD=BC=AB=2,F为BC的中点.
(Ⅰ)求证:DF⊥平面ABC;
(Ⅱ)求点D到平面EBC的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1.
(1)求直线AE与平面CDE所成角的大小(用反三角函数值表示);
(2)求多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F为CE的中点.
( I)求证:求证AF⊥CD;
(II)求多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F为CD的中点.
(Ⅰ)求证:AF⊥平面CDE;
(Ⅱ)求三棱锥A-BCE的体积.

查看答案和解析>>

同步练习册答案