精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,为正三角形,平面平面.

1)求证:平面平面

2)求三棱锥的体积;

3)在棱上是否存在点,使得平面?若存在,请确定点的位置并证明;若不存在,说明理由.

【答案】见解析

【解析】(1)因为,所以.

因为平面平面,平面平面,所以平面.2分)

因为平面,所以平面平面.4分)

2)如图,取的中点,连接.

因为为正三角形,所以.

因为平面平面,平面平面,所以平面,所以为三棱锥的高.6分)

因为为正三角形,,所以.

所以.8分)

3)在棱上存在点,当的中点时,平面.9分)

如图,分别取的中点,连接,所以.

因为,所以,所以四边形为平行四边形,所以.

因为,所以平面平面.11分)

因为平面,所以平面.12分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a﹣(a∈R)

(Ⅰ)判断函数f(x)在R上的单调性,并用单调函数的定义证明;

(Ⅱ)是否存在实数a使函数f(x)为奇函数?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是直角梯形是两个边长为2的正三角形,

(1)求证:平面⊥平面

(2)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)如果函数的单调递减区间为求函数的解析式

(2)在(1)的条件下,求函数的图象在点处的切线方程

(3)已知不等式恒成立若方程恰有两个不等实根,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义区间(a,b)[a,b)(a,b][a,b]的长度均为,多个区间并集的长度为各区间长度之和,例如,(1,2) [3,5)的长度d=(2-1)+(5-3)=3. [x]表示不超过x的最大整数,记{x}=x-[x],其中. ,当,不等式解集区间的长度为,则的值为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系直线的方程为曲线的参数方程为为参数).

(1)已知在极坐标系(与直角坐标系取相同的长度单位且以原点为极点轴正半轴为极轴)中,点的极坐标为判断点与曲线的位置关系

(2)设点是曲线上的一个动点求它到直线的距离的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥A-BCD,△ABC是等腰直角三角形,ACBC,BC=2,AD平面BCD,AD=1.

(1)求证:平面ABC平面ACD;

(2)EAB中点,求点A到平面CED的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性;

(Ⅱ)对于任意,任意,总有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】社会公众人物的言行一定程度上影响着年轻人的人生观、价值观.某媒体机构为了解大学生对影视、歌星以及著名主持人方面的新闻(简称:“星闻”)的关注情况,随机调查了某大学的位大学生,得到信息如下表:

(Ⅰ)从所抽取的人内关注“星闻”的大学生中,再抽取三人做进一步调查,求这三人性别不全相同的概率;

(Ⅱ)是否有以上的把握认为“关注‘星闻’与性别有关”,并说明理由;

(Ⅲ)把以上的频率视为概率,若从该大学随机抽取位男大学生,设这人中关注“星闻”的人数为,求的分布列及数学期望.

附: .

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案