精英家教网 > 高中数学 > 题目详情
不等式(
1
4
x>(
1
2
x的解集是
 
考点:指、对数不等式的解法
专题:不等式的解法及应用
分析:直接利用指数不等式的解法,指数函数的单调性转化为二次不等式,然后求解即可.
解答: 解:不等式(
1
4
x>(
1
2
x转化为:(
1
2
2x>(
1
2
x
由y=(
1
2
x是减函数,解得2x<x,
解得x∈(-∞,0).
故答案为:(-∞,0).
点评:本题考查指数不等式的解法,指数函数的单调性的应用,考查转化思想以及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinωx+acosωx(ω>0)的最小正周期为2π.
(1)求ω的值;
(2)已知直线x=-
π
4
是函数f(x)图象的一条对称轴,求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:log2.56.25.

查看答案和解析>>

科目:高中数学 来源: 题型:

在矩形ABCD中,AB=2,AD=6,E、F为AD的两个三等分点,AC和BF交于点G,△BEG的外接圆为圆H.
(1)求证:EG⊥BF;
(2)若圆H与圆C无公共点,求圆C半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足约束条件
x-y+1≥0
x+y≥0
x≤3
则z=x+2y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
2
3
2
,且内切于圆x2+y2=9.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(1,0)作直线l(不与x轴垂直)与该椭圆交于M,N两点,与y轴交于点R,若
RM
MQ
RN
NQ
,试判断λ+μ是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F为椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点,过F的直线与椭圆交于A,B两点.
(1)若点A为椭圆的上顶点,满足AF=2FB,且椭圆的右准线方程为x=3
3
,求椭圆的标准方程;
(2)若点A,B在椭圆的右准线上的射影分别为A1,B1(如图所示),求证:∠A1FB1为锐角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E为DD1的中点
(Ⅰ)求证:直线BD1⊥AC;
(Ⅱ)求异面直线BD1与CE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个命题中错误的是(  )
A、已知随机变量X~N(2,9)P(X>c+1)=P(X<c+1),则c=1
B、两个随机变量相关性越强,则相关系数r的绝对值越接近于1
C、在回归直线方程
y
=0.2x+12中,当解释变量x每增加一个单位时,预报变量
y
平均增加0.2个单位
D、对分类变量X与Y的随机变量K2的观测值k,k越小,“X与Y有关系”的把握程度越大

查看答案和解析>>

同步练习册答案