精英家教网 > 高中数学 > 题目详情
如图,是以为直径的半圆上异于的点,矩形所在的平面垂直于半圆所在的平面,且.

(1)求证:
(2)若异面直线所成的角为,求平面与平面所成的锐二面角的余弦值.
(1)证明过程详见解析;(2).

试题分析:本题主要考查线线垂直、线面垂直、面面垂直、二面角、向量法等基础知识,考查学生的空间想象能力、逻辑推理能力和计算能力.第一问,先利用面面垂直的性质得到线面垂直垂直于圆所在的平面,再利用线面垂直的性质得到,而在圆内AB为直径,所以,利用线面垂直的判定得平面,最后利用线面垂直的性质得到结论;第二问,利用向量法,先根据已知条件中的垂直关系建立空间直角坐标系,得到有关点及向量的坐标,利用向量法中的公式,求出平面DCE和平面AEB的法向量,再利用夹角公式求夹角的余弦值.
试题解析:(1)∵平面垂直于圆所在的平面,两平面的交线为平面,∴垂直于圆所在的平面.又在圆所在的平面内,∴.∵是直角,∴,∴平面,∴.    6分
(2)如图,

以点为坐标原点,所在的直线为轴,过点平行的直线为轴,建立空间直角坐标系.由异面直线所成的角为
,∴,由题设可知,∴.设平面的一个法向量为
,取,得.
.又平面的一个法向量为,∴.
平面与平面所成的锐二面角的余弦值.    13分
(其他解法可参考给分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在如图所示的多面体中,底面BCFE是梯形,EF//BC,又EF平面AEB,AEEB,AD//EF,BC=2AD=4,EF=3,AE=BE=2,G为BC的中点.
(1)求证:AB//平面DEG;
(2)求证:BDEG;
(3)求二面角C—DF—E的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的几何体中,面为正方形,面为等腰梯形,,且平面平面
(1)求与平面所成角的正弦值;
(2)线段上是否存在点,使平面平面
证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且底面ABCD,,E是PA的中点.

(1)求证:平面平面EBD;
(2)若PA=AB=2,直线PB与平面EBD所成角的正弦值为,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体中,在棱上.

(1)求异面直线所成的角;
(2)若二面角的大小为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,DAC中点,,延长AEBCF,将ABD沿BD折起,使平面ABD平面BCD,如图2所示.

(1)求证:AE⊥平面BCD
(2)求二面角A–DC–B的余弦值.
(3)在线段上是否存在点使得平面?若存在,请指明点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知平面四边形中,的中点,
.将此平面四边形沿折成直二面角
连接,设中点为

(1)证明:平面平面
(2)在线段上是否存在一点,使得平面?若存在,请确定点的位置;若不存在,请说明理由.
(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面ABCD是平行四边形,,设中点,点在线段上且

(1)求证:平面
(2)设二面角的大小为,若,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体ABCD-A1B1C1D1的棱长为1,O是底面A1B1C1D1的中心,则点O到平面ABC1D1的距离为    .

查看答案和解析>>

同步练习册答案