精英家教网 > 高中数学 > 题目详情
如图,已知平面四边形中,的中点,
.将此平面四边形沿折成直二面角
连接,设中点为

(1)证明:平面平面
(2)在线段上是否存在一点,使得平面?若存在,请确定点的位置;若不存在,请说明理由.
(3)求直线与平面所成角的正弦值.
(1)详见解析;(2)点存在,且为线段上靠近点的一个四等分点;(3).

试题分析:(1)分别证明即可;(2)方法一:先以为原点,分别为轴,建立直角坐标系,写出各点坐标中点,故,设点,利用平面,据此可解出;方法二:作,注意到,故相似,因此,于是得;(3)方法一:由于,即为平面的法向量,,要求直线与平面所成角的正弦值,记直线与平面所成角为,根据直线与面的夹角正弦正好等于直线与面的法向量的夹角余弦的绝对值,则知,故只需计算即可,利用余弦公式有,故;方法二:由于,所以可以转而考虑与平面所成角,为此需要找到在平面内的投影,此投影与所成角即为线面夹角,然后求与平面所成角的正弦,于是在中作,而平面平面,由此平面即为在平面内的投影,就等于直线与平面所成角,
中,
.
试题解析:(1)直二面角的平面角为,又
平面,所以
又在平面四边形中,由已知数据易得,而
平面,因为平面,所以平面平面 (4分)
(2)解法一:由(1)的分析易知,,则以为原点建立空间直角坐标系如图所示.

结合已知数据可得
中点.
平面,故可设

平面

由此解得,即
易知这样的点存在,且为线段上靠近点的一个四等分点;   (8分)
解法二:(略解)如图所示,

中作,交
因为平面平面,则有平面
中,结合已知数据,利用三角形相似等知识可以求得
故知所求点存在,且为线段上靠近点的一个四等分点;  ..(8分)
(3)解法一:由(2)是平面的一个法向量,又
则得,所以
记直线与平面所成角为,则知
故所求角的正弦值为.   ..(12分)
解法二:(略解)如上图中,因为,所以直线与平面所成角等于直线与平面所成角,由此,在中作,易证平面
连接,则为直线与平面所成角,
结合题目数据可求得,故所求角的正弦值为.   ..(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,是直角梯形,∠=90°,=1,=2,又=1,∠=120°,,直线与直线所成的角为60°.
(1)求二面角的的余弦值;
(2)求点到面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是以为直径的半圆上异于的点,矩形所在的平面垂直于半圆所在的平面,且.

(1)求证:
(2)若异面直线所成的角为,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱柱平面,四边形为正方形,分别为中点.
(1)求证:∥面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图, 已知四边形ABCDBCEG均为直角梯形,ADBCCEBG,且,平面ABCD⊥平面BCEGBC=CD=CE=2AD=2BG=2.

(1)求证:AG平面BDE;
(2)求:二面角GDEB的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是以为直径的半圆上异于的点,矩形所在的平面垂直于半圆所在的平面,且

(1)求证:
(2)若异面直线所成的角为,求平面和平面所成的锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求以为边的平行四边形的面积;
(2)若|a|=,且a分别与垂直,求向量a的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若平面α的一个法向量为n=(4,1,1),直线l的一个方向向量为a=(-2,-3,3),则l与α所成角的正弦值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知l∥α,且l的方向向量为u=(2,m,1),平面α的法向量为v=(1,,2),则m=     .

查看答案和解析>>

同步练习册答案